Spaces:
Runtime error
Runtime error
File size: 7,343 Bytes
430a6c7 bbc77e0 430a6c7 c82a662 430a6c7 c82a662 430a6c7 c82a662 430a6c7 d668e84 fde34e3 c82a662 b97942e c82a662 b97942e c82a662 b97942e 4721608 b97942e c82a662 b97942e fde34e3 c82a662 b97942e fde34e3 d668e84 b97942e c82a662 fde34e3 c82a662 cece48d c82a662 fde34e3 c82a662 b97942e 0475645 b97942e bbc77e0 d668e84 bbc77e0 b97942e c82a662 b97942e fde34e3 b97942e c82a662 fde34e3 c82a662 fde34e3 c82a662 fde34e3 b97942e c82a662 b97942e c82a662 4721608 b97942e 4721608 b97942e bbc77e0 b97942e 4721608 b97942e 0475645 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import cv2
import numpy as np
import pytesseract
import requests
import pandas as pd
import gradio as gr
import uuid
import os
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1. OCR on the full image (always)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def ocr_full_image(image: np.ndarray) -> str:
"""
Run Tesseract OCR on the entire image (no thresholding).
Return the raw OCR text.
"""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# We skip explicit thresholdingβsometimes stylized covers lose detail under THRESH_OTSU.
text = pytesseract.image_to_string(gray, config="--oem 3 --psm 6")
return text.strip()
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2. Query OpenLibrary API
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def query_openlibrary(title_text: str, author_text: str = None) -> dict | None:
"""
Search OpenLibrary by title (and optional author).
Return a dict with title, author_name, publisher, first_publish_year, or None.
"""
base_url = "https://openlibrary.org/search.json"
params = {"title": title_text}
if author_text:
params["author"] = author_text
try:
resp = requests.get(base_url, params=params, timeout=5)
resp.raise_for_status()
data = resp.json()
if data.get("docs"):
doc = data["docs"][0]
return {
"title": doc.get("title", ""),
"author_name": ", ".join(doc.get("author_name", [])),
"publisher": ", ".join(doc.get("publisher", [])),
"first_publish_year": doc.get("first_publish_year", ""),
}
except Exception as e:
print(f"OpenLibrary query failed: {e}")
return None
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3. Process one uploaded image (single OCR pass)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def process_image(image_file):
"""
Gradio passes either a PIL image or None.
If image_file is None, return an empty DataFrame and empty CSV.
Otherwise, convert to OpenCV BGR, OCR the entire image, parse first two lines for title/author,
query OpenLibrary once, and return a DataFrame + CSV file path.
"""
if image_file is None:
# No image provided β return empty table + an empty CSV file
df_empty = pd.DataFrame(columns=["title", "author_name", "publisher", "first_publish_year"])
empty_bytes = df_empty.to_csv(index=False).encode()
unique_name = f"books_{uuid.uuid4().hex}.csv"
temp_path = os.path.join("/tmp", unique_name)
with open(temp_path, "wb") as f:
f.write(empty_bytes)
return df_empty, temp_path
# Convert PIL to OpenCV BGR
img = np.array(image_file)[:, :, ::-1].copy()
# 1) Run OCR on full image
try:
full_text = ocr_full_image(img)
except pytesseract.pytesseract.TesseractNotFoundError:
# If Tesseract isnβt installed, return empty DataFrame and log the issue
print("ERROR: Tesseract not found. Did you add apt.txt with 'tesseract-ocr'?")
df_error = pd.DataFrame(columns=["title", "author_name", "publisher", "first_publish_year"])
error_bytes = df_error.to_csv(index=False).encode()
unique_name = f"books_{uuid.uuid4().hex}.csv"
temp_path = os.path.join("/tmp", unique_name)
with open(temp_path, "wb") as f:
f.write(error_bytes)
return df_error, temp_path
lines = [line.strip() for line in full_text.splitlines() if line.strip()]
records = []
if lines:
# Use first line as title, second (if exists) as author
title_guess = lines[0]
author_guess = lines[1] if len(lines) > 1 else None
meta = query_openlibrary(title_guess, author_guess)
if meta:
records.append(meta)
else:
# No OpenLibrary match β still include OCR guesses
records.append({
"title": title_guess,
"author_name": author_guess or "",
"publisher": "",
"first_publish_year": "",
})
# Build DataFrame (even if empty)
df = pd.DataFrame(records, columns=["title", "author_name", "publisher", "first_publish_year"])
csv_bytes = df.to_csv(index=False).encode()
# Write CSV to a unique temporary file
unique_name = f"books_{uuid.uuid4().hex}.csv"
temp_path = os.path.join("/tmp", unique_name)
with open(temp_path, "wb") as f:
f.write(csv_bytes)
return df, temp_path
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4. Build the Gradio Interface
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def build_interface():
with gr.Blocks(title="SingleβCover OCR + OpenLibrary Lookup") as demo:
gr.Markdown(
"""
## Book Cover OCR + OpenLibrary Lookup
1. Upload a photo of a single book cover.
2. The app will run OCR on the full image, take:
- the **first line** as a βtitleβ guess, and
- the **second line** as an βauthorβ guess (if present), then
- query OpenLibrary for metadata.
3. Results display in a table and can be downloaded as CSV.
> **Note:**
> β’ Ensure Tesseract OCR is installed (see `apt.txt`).
> β’ If no image is uploaded, the table and CSV will be empty.
"""
)
with gr.Row():
img_in = gr.Image(type="pil", label="Upload Single Book Cover")
run_button = gr.Button("Scan & Lookup")
output_table = gr.Dataframe(
headers=["title", "author_name", "publisher", "first_publish_year"],
label="Detected Book Metadata",
datatype="pandas",
)
download_file = gr.File(label="Download CSV")
def on_run(image):
df, filepath = process_image(image)
return df, filepath
run_button.click(
fn=on_run,
inputs=[img_in],
outputs=[output_table, download_file],
)
return demo
if __name__ == "__main__":
demo_app = build_interface()
demo_app.launch()
|