Spaces:
Runtime error
Runtime error
File size: 6,289 Bytes
430a6c7 bbc77e0 430a6c7 d668e84 430a6c7 d668e84 430a6c7 d668e84 430a6c7 d668e84 b97942e d668e84 b97942e d668e84 b97942e 4721608 b97942e d668e84 b97942e d668e84 b97942e d668e84 b97942e d668e84 b97942e d668e84 b97942e d668e84 b97942e 0475645 b97942e bbc77e0 d668e84 bbc77e0 b97942e d668e84 b97942e d668e84 b97942e d668e84 b97942e d668e84 b97942e d668e84 4721608 b97942e 4721608 b97942e bbc77e0 b97942e 4721608 b97942e 0475645 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import cv2
import numpy as np
import pytesseract
import requests
import pandas as pd
import gradio as gr
import uuid
import os
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1. OCR on the full image (always)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def ocr_full_image(image: np.ndarray) -> str:
"""
Run Tesseract OCR on the entire image (no thresholding).
Return the raw OCR text.
"""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Note: weβre NOT thresholding hereβsometimes stylized covers lose detail under THRESH_OTSU.
text = pytesseract.image_to_string(gray, config="--oem 3 --psm 6")
return text.strip()
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2. Query OpenLibrary API
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def query_openlibrary(title_text: str, author_text: str = None) -> dict | None:
"""
Search OpenLibrary by title (and optional author).
Return a dict with title, author_name, publisher, first_publish_year, or None.
"""
base_url = "https://openlibrary.org/search.json"
params = {"title": title_text}
if author_text:
params["author"] = author_text
try:
resp = requests.get(base_url, params=params, timeout=5)
resp.raise_for_status()
data = resp.json()
if data.get("docs"):
doc = data["docs"][0]
return {
"title": doc.get("title", ""),
"author_name": ", ".join(doc.get("author_name", [])),
"publisher": ", ".join(doc.get("publisher", [])),
"first_publish_year": doc.get("first_publish_year", ""),
}
except Exception as e:
print(f"OpenLibrary query failed: {e}")
return None
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3. Process one uploaded image (single OCR pass)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def process_image(image_file):
"""
Gradio passes a PIL image or numpy array. Convert to OpenCV BGR,
OCR the entire image, parse first two lines for title/author,
query OpenLibrary once, and return a DataFrame + CSV file path.
"""
# Convert PIL to OpenCV BGR
img = np.array(image_file)[:, :, ::-1].copy()
# 1) Run OCR on full image
full_text = ocr_full_image(img)
lines = [line.strip() for line in full_text.splitlines() if line.strip()]
records = []
if lines:
# Use first line as title, second (if exists) as author
title_guess = lines[0]
author_guess = lines[1] if len(lines) > 1 else None
meta = query_openlibrary(title_guess, author_guess)
if meta:
records.append(meta)
else:
# No match β still include OCR guesses
records.append({
"title": title_guess,
"author_name": author_guess or "",
"publisher": "",
"first_publish_year": "",
})
# Build DataFrame (even if empty)
df = pd.DataFrame(records, columns=["title", "author_name", "publisher", "first_publish_year"])
csv_bytes = df.to_csv(index=False).encode()
# Write CSV to a unique temporary file
unique_name = f"books_{uuid.uuid4().hex}.csv"
temp_path = os.path.join("/tmp", unique_name)
with open(temp_path, "wb") as f:
f.write(csv_bytes)
return df, temp_path
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4. Build the Gradio Interface
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def build_interface():
with gr.Blocks(title="Book Cover OCR + Lookup (SingleβCover Mode)") as demo:
gr.Markdown(
"""
## Book Cover OCR + OpenLibrary Lookup
1. Upload a photo of a single book cover (or any coverβstyle image).
2. The app will run OCR on the full image, take:
- the **first line** as a βtitleβ guess, and
- the **second line** (if any) as an βauthorβ guess, then
- query OpenLibrary once for metadata.
3. Youβll see the result in a table and can download a CSV.
> **Note:**
> β’ Because we skip rectangle detection, any visible text on your cover (large, legible fonts) should be picked up.
> β’ If you have multiple covers in one photo, only the first βtitle/authorβ will be used.
"""
)
with gr.Row():
img_in = gr.Image(type="pil", label="Upload Single Book Cover")
run_button = gr.Button("Scan & Lookup")
output_table = gr.Dataframe(
headers=["title", "author_name", "publisher", "first_publish_year"],
label="Detected Book Metadata",
datatype="pandas",
)
download_file = gr.File(label="Download CSV")
def on_run(image):
df, filepath = process_image(image)
return df, filepath
run_button.click(
fn=on_run,
inputs=[img_in],
outputs=[output_table, download_file],
)
return demo
if __name__ == "__main__":
demo_app = build_interface()
demo_app.launch()
|