File size: 6,289 Bytes
430a6c7
 
 
 
 
 
bbc77e0
 
430a6c7
 
d668e84
430a6c7
d668e84
430a6c7
d668e84
430a6c7
 
d668e84
 
 
b97942e
 
 
d668e84
b97942e
d668e84
b97942e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4721608
b97942e
 
 
 
 
 
 
d668e84
b97942e
 
 
d668e84
 
 
b97942e
d668e84
 
b97942e
d668e84
 
 
b97942e
d668e84
 
 
b97942e
 
 
 
 
 
 
d668e84
 
 
 
 
 
 
b97942e
0475645
 
b97942e
bbc77e0
d668e84
bbc77e0
 
 
 
 
 
b97942e
 
d668e84
b97942e
 
d668e84
b97942e
 
d668e84
 
 
 
 
 
 
 
 
 
 
 
b97942e
 
 
 
d668e84
b97942e
 
 
 
d668e84
4721608
b97942e
4721608
b97942e
 
bbc77e0
 
b97942e
4721608
 
 
 
 
b97942e
 
 
 
 
0475645
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import cv2
import numpy as np
import pytesseract
import requests
import pandas as pd
import gradio as gr
import uuid
import os

# ──────────────────────────────────────────────────────────────
# 1. OCR on the full image (always)
# ──────────────────────────────────────────────────────────────
def ocr_full_image(image: np.ndarray) -> str:
    """
    Run Tesseract OCR on the entire image (no thresholding).
    Return the raw OCR text.
    """
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # Note: we’re NOT thresholding hereβ€”sometimes stylized covers lose detail under THRESH_OTSU.
    text = pytesseract.image_to_string(gray, config="--oem 3 --psm 6")
    return text.strip()

# ──────────────────────────────────────────────────────────────
# 2. Query OpenLibrary API
# ──────────────────────────────────────────────────────────────
def query_openlibrary(title_text: str, author_text: str = None) -> dict | None:
    """
    Search OpenLibrary by title (and optional author).
    Return a dict with title, author_name, publisher, first_publish_year, or None.
    """
    base_url = "https://openlibrary.org/search.json"
    params = {"title": title_text}
    if author_text:
        params["author"] = author_text

    try:
        resp = requests.get(base_url, params=params, timeout=5)
        resp.raise_for_status()
        data = resp.json()
        if data.get("docs"):
            doc = data["docs"][0]
            return {
                "title": doc.get("title", ""),
                "author_name": ", ".join(doc.get("author_name", [])),
                "publisher": ", ".join(doc.get("publisher", [])),
                "first_publish_year": doc.get("first_publish_year", ""),
            }
    except Exception as e:
        print(f"OpenLibrary query failed: {e}")

    return None

# ──────────────────────────────────────────────────────────────
# 3. Process one uploaded image (single OCR pass)
# ──────────────────────────────────────────────────────────────
def process_image(image_file):
    """
    Gradio passes a PIL image or numpy array. Convert to OpenCV BGR, 
    OCR the entire image, parse first two lines for title/author,
    query OpenLibrary once, and return a DataFrame + CSV file path.
    """
    # Convert PIL to OpenCV BGR
    img = np.array(image_file)[:, :, ::-1].copy()

    # 1) Run OCR on full image
    full_text = ocr_full_image(img)
    lines = [line.strip() for line in full_text.splitlines() if line.strip()]

    records = []
    if lines:
        # Use first line as title, second (if exists) as author
        title_guess = lines[0]
        author_guess = lines[1] if len(lines) > 1 else None
        meta = query_openlibrary(title_guess, author_guess)

        if meta:
            records.append(meta)
        else:
            # No match β†’ still include OCR guesses
            records.append({
                "title": title_guess,
                "author_name": author_guess or "",
                "publisher": "",
                "first_publish_year": "",
            })

    # Build DataFrame (even if empty)
    df = pd.DataFrame(records, columns=["title", "author_name", "publisher", "first_publish_year"])
    csv_bytes = df.to_csv(index=False).encode()

    # Write CSV to a unique temporary file
    unique_name = f"books_{uuid.uuid4().hex}.csv"
    temp_path = os.path.join("/tmp", unique_name)
    with open(temp_path, "wb") as f:
        f.write(csv_bytes)

    return df, temp_path

# ──────────────────────────────────────────────────────────────
# 4. Build the Gradio Interface
# ──────────────────────────────────────────────────────────────
def build_interface():
    with gr.Blocks(title="Book Cover OCR + Lookup (Single‐Cover Mode)") as demo:
        gr.Markdown(
            """
            ## Book Cover OCR + OpenLibrary Lookup

            1. Upload a photo of a single book cover (or any cover‐style image).  
            2. The app will run OCR on the full image, take:
               - the **first line** as a β€œtitle” guess, and  
               - the **second line** (if any) as an β€œauthor” guess, then  
               - query OpenLibrary once for metadata.  
            3. You’ll see the result in a table and can download a CSV.  

            > **Note:**  
            > β€’ Because we skip rectangle detection, any visible text on your cover (large, legible fonts) should be picked up.  
            > β€’ If you have multiple covers in one photo, only the first β€œtitle/author” will be used.
            """
        )

        with gr.Row():
            img_in = gr.Image(type="pil", label="Upload Single Book Cover")
            run_button = gr.Button("Scan & Lookup")

        output_table = gr.Dataframe(
            headers=["title", "author_name", "publisher", "first_publish_year"],
            label="Detected Book Metadata",
            datatype="pandas",
        )
        download_file = gr.File(label="Download CSV")

        def on_run(image):
            df, filepath = process_image(image)
            return df, filepath

        run_button.click(
            fn=on_run,
            inputs=[img_in],
            outputs=[output_table, download_file],
        )

    return demo

if __name__ == "__main__":
    demo_app = build_interface()
    demo_app.launch()