File size: 7,036 Bytes
dd7488f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import math
from typing import List
from itertools import chain
import networkx as nx
import plotly.graph_objs as go
import streamlit as st

# Start and end are lists defining start and end points
# Edge x and y are lists used to construct the graph
# arrowAngle and arrowLength define properties of the arrowhead
# arrowPos is None, 'middle' or 'end' based on where on the edge you want the arrow to appear
# arrowLength is the length of the arrowhead
# arrowAngle is the angle in degrees that the arrowhead makes with the edge
# dotSize is the plotly scatter dot size you are using (used to even out line spacing when you have a mix of edge lengths)
def addEdge(start, end, edge_x, edge_y, lengthFrac=1, arrowPos = None, arrowLength=0.025, arrowAngle = 30, dotSize=20):

    # Get start and end cartesian coordinates
    x0, y0 = start
    x1, y1 = end

    # Incorporate the fraction of this segment covered by a dot into total reduction
    length = math.sqrt( (x1-x0)**2 + (y1-y0)**2 )
    dotSizeConversion = .0565/20 # length units per dot size
    convertedDotDiameter = dotSize * dotSizeConversion
    lengthFracReduction = convertedDotDiameter / length
    lengthFrac = lengthFrac - lengthFracReduction

    # If the line segment should not cover the entire distance, get actual start and end coords
    skipX = (x1-x0)*(1-lengthFrac)
    skipY = (y1-y0)*(1-lengthFrac)
    x0 = x0 + skipX/2
    x1 = x1 - skipX/2
    y0 = y0 + skipY/2
    y1 = y1 - skipY/2

    # Append line corresponding to the edge
    edge_x.append(x0)
    edge_x.append(x1)
    edge_x.append(None) # Prevents a line being drawn from end of this edge to start of next edge
    edge_y.append(y0)
    edge_y.append(y1)
    edge_y.append(None)

    # Draw arrow
    if not arrowPos == None:

        # Find the point of the arrow; assume is at end unless told middle
        pointx = x1
        pointy = y1

        eta = math.degrees(math.atan((x1-x0)/(y1-y0))) if y1!=y0 else 90.0

        if arrowPos == 'middle' or arrowPos == 'mid':
            pointx = x0 + (x1-x0)/2
            pointy = y0 + (y1-y0)/2

        # Find the directions the arrows are pointing
        signx = (x1-x0)/abs(x1-x0) if x1!=x0 else +1    #verify this once
        signy = (y1-y0)/abs(y1-y0) if y1!=y0 else +1    #verified

        # Append first arrowhead
        dx = arrowLength * math.sin(math.radians(eta + arrowAngle))
        dy = arrowLength * math.cos(math.radians(eta + arrowAngle))
        edge_x.append(pointx)
        edge_x.append(pointx - signx**2 * signy * dx)
        edge_x.append(None)
        edge_y.append(pointy)
        edge_y.append(pointy - signx**2 * signy * dy)
        edge_y.append(None)

        # And second arrowhead
        dx = arrowLength * math.sin(math.radians(eta - arrowAngle))
        dy = arrowLength * math.cos(math.radians(eta - arrowAngle))
        edge_x.append(pointx)
        edge_x.append(pointx - signx**2 * signy * dx)
        edge_x.append(None)
        edge_y.append(pointy)
        edge_y.append(pointy - signx**2 * signy * dy)
        edge_y.append(None)


    return edge_x, edge_y

def add_arrows(source_x: List[float], target_x: List[float], source_y: List[float], target_y: List[float],
               arrowLength=0.025, arrowAngle=30):
    pointx = list(map(lambda x: x[0] + (x[1] - x[0]) / 2, zip(source_x, target_x)))
    pointy = list(map(lambda x: x[0] + (x[1] - x[0]) / 2, zip(source_y, target_y)))
    etas = list(map(lambda x: math.degrees(math.atan((x[1] - x[0]) / (x[3] - x[2]))),
                    zip(source_x, target_x, source_y, target_y)))

    signx = list(map(lambda x: (x[1] - x[0]) / abs(x[1] - x[0]), zip(source_x, target_x)))
    signy = list(map(lambda x: (x[1] - x[0]) / abs(x[1] - x[0]), zip(source_y, target_y)))

    dx = list(map(lambda x: arrowLength * math.sin(math.radians(x + arrowAngle)), etas))
    dy = list(map(lambda x: arrowLength * math.cos(math.radians(x + arrowAngle)), etas))
    none_spacer = [None for _ in range(len(pointx))]
    arrow_line_x = list(map(lambda x: x[0] - x[1] ** 2 * x[2] * x[3], zip(pointx, signx, signy, dx)))
    arrow_line_y = list(map(lambda x: x[0] - x[1] ** 2 * x[2] * x[3], zip(pointy, signx, signy, dy)))

    arrow_line_1x_coords = list(chain(*zip(pointx, arrow_line_x, none_spacer)))
    arrow_line_1y_coords = list(chain(*zip(pointy, arrow_line_y, none_spacer)))

    dx = list(map(lambda x: arrowLength * math.sin(math.radians(x - arrowAngle)), etas))
    dy = list(map(lambda x: arrowLength * math.cos(math.radians(x - arrowAngle)), etas))
    none_spacer = [None for _ in range(len(pointx))]
    arrow_line_x = list(map(lambda x: x[0] - x[1] ** 2 * x[2] * x[3], zip(pointx, signx, signy, dx)))
    arrow_line_y = list(map(lambda x: x[0] - x[1] ** 2 * x[2] * x[3], zip(pointy, signx, signy, dy)))

    arrow_line_2x_coords = list(chain(*zip(pointx, arrow_line_x, none_spacer)))
    arrow_line_2y_coords = list(chain(*zip(pointy, arrow_line_y, none_spacer)))

    x_arrows = arrow_line_1x_coords + arrow_line_2x_coords
    y_arrows = arrow_line_1y_coords + arrow_line_2y_coords

    return x_arrows, y_arrows

@st.cache(allow_output_mutation=True)
def get_pipeline_graph(pipeline):
    # Controls for how the graph is drawn
    nodeColor = 'Blue'
    nodeSize = 20
    lineWidth = 2
    lineColor = '#000000'

    G = pipeline.graph

    pos = nx.spring_layout(G)

    for node in G.nodes:
        G.nodes[node]['pos'] = list(pos[node])
        
    # Make list of nodes for plotly
    node_x = []
    node_y = []
    for node in G.nodes():
        x, y = G.nodes[node]['pos']
        node_x.append(x)
        node_y.append(y)
        
    # Make a list of edges for plotly, including line segments that result in arrowheads
    edge_x = []
    edge_y = []
    for edge in G.edges():
        start = G.nodes[edge[0]]['pos']
        end = G.nodes[edge[1]]['pos']
        # addEdge(start, end, edge_x, edge_y, lengthFrac=1, arrowPos = None, arrowLength=0.025, arrowAngle = 30, dotSize=20)
        edge_x, edge_y = addEdge(start, end, edge_x, edge_y, lengthFrac=.8, arrowPos='end', arrowLength=.04, arrowAngle=30, dotSize=nodeSize)
        

    edge_trace = go.Scatter(x=edge_x, y=edge_y, line=dict(width=lineWidth, color=lineColor), hoverinfo='none', mode='lines')


    node_trace = go.Scatter(x=node_x, y=node_y, mode='markers', hoverinfo='text', marker=dict(showscale=False, color = nodeColor, size=nodeSize))

    fig = go.Figure(data=[edge_trace, node_trace],
                layout=go.Layout(
                    showlegend=False,
                    hovermode='closest',
                    margin=dict(b=20,l=5,r=5,t=40),
                    xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
                    yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
                    )
                
    # Note: if you don't use fixed ratio axes, the arrows won't be symmetrical
    fig.update_layout(yaxis = dict(scaleanchor = "x", scaleratio = 1), plot_bgcolor='rgb(255,255,255)')
    
    return fig