Spaces:
Running
Running
File size: 2,942 Bytes
01b8e8e 39503cb 4107940 39503cb 1b47089 39503cb 01b8e8e f670f93 01b8e8e 0a35ae0 57f7a2e f670f93 9d9f8c0 57f7a2e 213d365 fae3074 9f4d760 39503cb 01b8e8e 39503cb 01b8e8e 39503cb 6c3736e 39503cb 01b8e8e 39503cb 01b8e8e 6c3736e 01b8e8e 39503cb 01b8e8e 39503cb 01b8e8e 39503cb 01b8e8e 39503cb 6c3736e 39503cb 01b8e8e 0a35ae0 01b8e8e 0a35ae0 01b8e8e 39503cb 01b8e8e 39503cb 01b8e8e 6c3736e 01b8e8e 39503cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import streamlit as st
from streamlit_option_menu import option_menu
from core.search_index import index, search
from interface.components import (
component_file_input,
component_show_pipeline,
component_show_search_result,
component_text_input,
component_article_url,
)
def page_landing_page(container):
with container:
st.header("Neural Search V2.0")
st.markdown(
"This is a tool to allow indexing & search content using neural capabilities"
)
st.markdown(
"It uses the [Haystack](https://haystack.deepset.ai/overview/intro) open-source framework for building search systems"
)
st.markdown(
"In this second version you can:"
"\n - Index raw text, URLs and almost any file as documents"
"\n - Use Dense Passage Retrieval & Keyword Search pipeline"
"\n - Search the indexed documents"
)
st.markdown(
"TODO list:"
"\n - Build other pipelines"
"\n - [Optional] Include text to audio to read responses"
)
st.markdown(
"Follow development of the tool [here](https://github.com/ugm2/neural-search-demo)"
"\n\nDeveloped with π by [@ugm2](https://github.com/ugm2)"
)
def page_search(container):
with container:
st.title("Query me!")
## SEARCH ##
query = st.text_input("Query")
component_show_pipeline(st.session_state["pipeline"]["search_pipeline"])
if st.button("Search"):
st.session_state["search_results"] = search(
queries=[query],
pipeline=st.session_state["pipeline"]["search_pipeline"],
)
if "search_results" in st.session_state:
component_show_search_result(
container=container, results=st.session_state["search_results"][0]
)
def page_index(container):
with container:
st.title("Index time!")
component_show_pipeline(st.session_state["pipeline"]["index_pipeline"])
input_funcs = {
"Raw Text": (component_text_input, "card-text"),
"URL": (component_article_url, "link"),
"File": (component_file_input, "file-text"),
}
selected_input = option_menu(
None,
list(input_funcs.keys()),
icons=[f[1] for f in input_funcs.values()],
menu_icon="list",
default_index=0,
orientation="horizontal",
)
corpus = input_funcs[selected_input][0](container)
if len(corpus) > 0:
index_results = None
if st.button("Index"):
index_results = index(
corpus,
st.session_state["pipeline"]["index_pipeline"],
)
if index_results:
st.write(index_results)
|