File size: 5,670 Bytes
3ac5c08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# filepath: /Users/udaylunawat/Downloads/Data-Science-Projects/NotebookLM_clone/gradio_app.py
import os
import tempfile
import gradio as gr
from notebook_lm_kokoro import generate_podcast_script, KPipeline
import soundfile as sf
import numpy as np
import ast
import shutil
import warnings
warnings.filterwarnings("ignore")
# A modified version of generate_audio_from_script to accept voice mapping
def generate_audio_from_script_with_voices(script, speaker1_voice, speaker2_voice, output_file):
voice_map = {"Speaker 1": speaker1_voice, "Speaker 2": speaker2_voice}
# Clean up the script string if needed
script = script.strip()
if not script.startswith("[") or not script.endswith("]"):
print("Invalid transcript format. Expected a list of tuples.")
return None
try:
transcript_list = ast.literal_eval(script)
if not isinstance(transcript_list, list):
raise ValueError("Transcript is not a list")
all_audio_segments = []
# Process each dialogue entry
for i, entry in enumerate(transcript_list):
if not isinstance(entry, tuple) or len(entry) != 2:
print(f"Skipping invalid entry {i}: {entry}")
continue
speaker, dialogue = entry
chosen_voice = voice_map.get(speaker, "af_heart")
print(f"Generating audio for {speaker} with voice '{chosen_voice}'...")
pipeline = KPipeline(lang_code="a")
generator = pipeline(dialogue, voice=chosen_voice)
segment_audio = []
for j, (gs, ps, audio) in enumerate(generator):
# print(f"{speaker} - Segment {j}: Global Step = {gs}, Partial Step = {ps}")
segment_audio.append(audio)
if segment_audio:
segment_full = np.concatenate(segment_audio, axis=0)
all_audio_segments.append(segment_full)
if not all_audio_segments:
print("No audio segments were generated.")
return None
# Add a pause between segments
sample_rate = 24000
pause = np.zeros(sample_rate, dtype=np.float32)
final_audio = all_audio_segments[0]
for seg in all_audio_segments[1:]:
final_audio = np.concatenate((final_audio, pause, seg), axis=0)
sf.write(output_file, final_audio, sample_rate)
print(f"Saved final audio as {output_file}")
return output_file
except Exception as e:
print(f"Error processing transcript: {e}")
return None
def process_pdf(pdf_file, speaker1_voice, speaker2_voice, provider):
"""Process the uploaded PDF file and generate audio"""
try:
# Check if we received a valid file
if pdf_file is None:
return "No file uploaded", None
# Create a temporary file with .pdf extension
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
# For Gradio uploads, we need to copy the file
shutil.copy2(pdf_file.name, tmp.name)
tmp_path = tmp.name
print(f"Uploaded PDF saved at {tmp_path}")
# Generate transcript using your existing function
transcript, transcript_path = generate_podcast_script(tmp_path, provider=provider)
if transcript is None:
return "Error generating transcript", None
# Define an output file path for the generated audio
audio_output_path = os.path.join(
os.path.dirname(tmp_path),
f"audio_{os.path.basename(tmp_path).replace('.pdf', '.wav')}"
)
result = generate_audio_from_script_with_voices(
transcript,
speaker1_voice,
speaker2_voice,
output_file=audio_output_path
)
if result is None:
return "Error generating audio", None
return "Process complete!", result
except Exception as e:
print(f"Error in process_pdf: {str(e)}")
return f"Error processing file: {str(e)}", None
def create_gradio_app():
with gr.Blocks() as app:
gr.Markdown("# NotebookLM-Kokoro TTS App")
gr.Markdown("Upload a PDF, choose voices, and generate TTS audio using Kokoro.")
with gr.Row():
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
with gr.Row():
with gr.Column():
speaker1_voice = gr.Dropdown(
choices=["af_heart", "af_bella", "hf_beta"],
value="af_heart",
label="Speaker 1 Voice"
)
speaker2_voice = gr.Dropdown(
choices=["af_nicole", "af_heart", "bf_emma"],
value="af_nicole",
label="Speaker 2 Voice"
)
provider = gr.Radio(
choices=["openai", "openrouter"],
value="openrouter",
label="API Provider (TTS Script Generation)"
)
submit_btn = gr.Button("Generate Audio")
with gr.Row():
status_output = gr.Textbox(label="Status")
audio_output = gr.Audio(label="Generated Audio", type="filepath")
submit_btn.click(
fn=process_pdf,
inputs=[pdf_input, speaker1_voice, speaker2_voice, provider],
outputs=[status_output, audio_output]
)
return app
if __name__ == "__main__":
demo = create_gradio_app()
demo.launch(share=True) # add share=True to get a public URL |