Spaces:
Runtime error
Runtime error
File size: 1,573 Bytes
409c8d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import torch
import numpy as np
import pandas as pd
import gradio as gr
from PIL import Image
from transformers import CLIPProcessor, CLIPModel
def find_similar(image):
device = "cuda" if torch.cuda.is_available() else "cpu"
## Define model
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
model = model.to(device)
## Load data
photos = pd.read_csv("./photos.tsv000", sep='\t', header=0)
photo_features = np.load("./features.npy")
photo_ids = pd.read_csv("./photo_ids.csv")
photo_ids = list(photo_ids['photo_id'])
## Inference
with torch.no_grad():
photo_preprocessed = processor(text=None, images=image, return_tensors="pt", padding=True)["pixel_values"]
search_photo_feature = model.get_image_features(photos_preprocessed.to(device))
search_photo_feature /= search_photo_feature.norm(dim=-1, keepdim=True)
search_photos_feature = search_photos_feature.cpu().numpy()
## Find similarity
similarities = list((search_photos_features @ photo_features.T).squeeze(0))
## Return best image :)
best_photo = sorted(zip(similarities, range(photo_features.shape[0])), key=lambda x: x[0], reverse=True)[0]
idx = best_photos[1]
photo_id = photo_ids[idx]
photo_data = photos[photos["photo_id"] == photo_id].iloc[0]
return Image(url=photo_data["photo_image_url"] + "?w=640")
iface = gr.Interface(fn=bg_remove, inputs="image", outputs="image").launch() |