File size: 968 Bytes
b719e63
583d619
b719e63
 
 
9414621
b719e63
9414621
 
b719e63
f70b02d
f376ec4
e38c200
f70b02d
f06ba45
b719e63
 
 
 
 
 
 
80b787f
 
e38c200
b719e63
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import gradio as gr
import os
import argparse
import torch
from PIL import Image
from pdf2image import convert_from_path
from donut import DonutModel

def demo_process(pdf_path):
    global model, task_prompt, task_name
    full_path = os.path.join(os.getcwd(),pdf_path)
    input_img_list = convert_from_path(full_path)
    # output = model.inference(image=input_img, prompt=task_prompt)["predictions"][0]
    return full_path
    
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="SGSInvoice")
parser.add_argument("--pretrained_path", type=str, default="uartimcs/donut-invoice-extract")
args, left_argv = parser.parse_known_args()
task_name = args.task
task_prompt = f"<s_{task_name}>"

# model = DonutModel.from_pretrained("uartimcs/donut-invoice-extract")
# model.eval()
demo = gr.Interface(fn=demo_process,inputs=gr.File(label="Upload PDF"),outputs="text", title=f"Donut 🍩 demonstration for `{task_name}` task",)
demo.launch()