Spaces:
Sleeping
Sleeping
tyriaa
commited on
Commit
·
26848d5
1
Parent(s):
f4e203d
Mise à jour de l'application avec le tableau de bord d'actualités IA
Browse files- README.md +17 -4
- requirements.txt +7 -3
- src/fetch_data.py +162 -0
- src/streamlit_app.py +134 -34
README.md
CHANGED
|
@@ -11,9 +11,22 @@ pinned: false
|
|
| 11 |
short_description: 'Regroup multiple RSS flux on AI '
|
| 12 |
---
|
| 13 |
|
| 14 |
-
#
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
short_description: 'Regroup multiple RSS flux on AI '
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# AI News Dashboard
|
| 15 |
|
| 16 |
+
Cette application web Streamlit agrège et affiche les dernières actualités sur l'intelligence artificielle à partir de multiples flux RSS. Elle permet aux utilisateurs de filtrer les nouvelles par date et par source, et d'ajouter leurs propres flux RSS personnalisés.
|
| 17 |
|
| 18 |
+
## Fonctionnalités
|
| 19 |
+
|
| 20 |
+
- Agrégation de flux RSS de sources d'actualités IA majeures
|
| 21 |
+
- Filtrage par date et par source
|
| 22 |
+
- Ajout de flux RSS personnalisés
|
| 23 |
+
- Mise en cache des données pour des performances optimales
|
| 24 |
+
- Interface utilisateur intuitive
|
| 25 |
+
|
| 26 |
+
## Technologies utilisées
|
| 27 |
+
|
| 28 |
+
- Streamlit
|
| 29 |
+
- Pandas
|
| 30 |
+
- Feedparser
|
| 31 |
+
- BeautifulSoup
|
| 32 |
+
- Concurrent Futures (pour le traitement parallèle)
|
requirements.txt
CHANGED
|
@@ -1,3 +1,7 @@
|
|
| 1 |
-
|
| 2 |
-
pandas
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.32.0
|
| 2 |
+
pandas==2.1.0
|
| 3 |
+
feedparser==6.0.10
|
| 4 |
+
bs4==0.0.1
|
| 5 |
+
beautifulsoup4==4.12.2
|
| 6 |
+
concurrent-log-handler==0.9.24
|
| 7 |
+
altair
|
src/fetch_data.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import feedparser
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datetime import datetime, timedelta
|
| 4 |
+
import ssl
|
| 5 |
+
from bs4 import BeautifulSoup
|
| 6 |
+
import warnings
|
| 7 |
+
import concurrent.futures
|
| 8 |
+
import re
|
| 9 |
+
|
| 10 |
+
if hasattr(ssl, '_create_unverified_context'):
|
| 11 |
+
ssl._create_default_https_context = ssl._create_unverified_context
|
| 12 |
+
|
| 13 |
+
def fetch_single_feed(link_source_tuple):
|
| 14 |
+
"""Fetch a single RSS feed and return its entries"""
|
| 15 |
+
link, source = link_source_tuple
|
| 16 |
+
entries = {"Title": [], "Link": [], "Published": [], "Description": [], "Source": []}
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
feed = feedparser.parse(link)
|
| 20 |
+
|
| 21 |
+
for entry in feed.entries:
|
| 22 |
+
entries["Title"].append(entry.get("title", "No Title"))
|
| 23 |
+
entries["Link"].append(entry.get("link", "No Link"))
|
| 24 |
+
entries["Published"].append(entry.get("published", "No Date"))
|
| 25 |
+
entries["Description"].append(entry.get("description", "No Description"))
|
| 26 |
+
entries["Source"].append(source)
|
| 27 |
+
|
| 28 |
+
except Exception as e:
|
| 29 |
+
print(f"Error fetching {link}: {e}")
|
| 30 |
+
|
| 31 |
+
return entries
|
| 32 |
+
|
| 33 |
+
def fetch_feed(links):
|
| 34 |
+
"""Fetch multiple RSS feeds in parallel"""
|
| 35 |
+
all_entries = {"Title": [], "Link": [], "Published": [], "Description": [], "Source": []}
|
| 36 |
+
|
| 37 |
+
# Use ThreadPoolExecutor to fetch feeds in parallel
|
| 38 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
|
| 39 |
+
future_to_link = {executor.submit(fetch_single_feed, (link, source)): (link, source)
|
| 40 |
+
for link, source in links.items()}
|
| 41 |
+
|
| 42 |
+
for future in concurrent.futures.as_completed(future_to_link):
|
| 43 |
+
link, source = future_to_link[future]
|
| 44 |
+
try:
|
| 45 |
+
result = future.result()
|
| 46 |
+
# Merge results into all_entries
|
| 47 |
+
for key in all_entries:
|
| 48 |
+
all_entries[key].extend(result[key])
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print(f"Exception for {link}: {e}")
|
| 51 |
+
|
| 52 |
+
# Create a DataFrame from all entries
|
| 53 |
+
df = pd.DataFrame(all_entries)
|
| 54 |
+
return df
|
| 55 |
+
|
| 56 |
+
def clean_html(text):
|
| 57 |
+
"""Clean HTML tags from text"""
|
| 58 |
+
try:
|
| 59 |
+
soup = BeautifulSoup(text, "html.parser")
|
| 60 |
+
return soup.get_text()
|
| 61 |
+
except Exception as e:
|
| 62 |
+
print(f"Error cleaning HTML: {e}")
|
| 63 |
+
return text
|
| 64 |
+
|
| 65 |
+
def extract_date(date_str):
|
| 66 |
+
"""Extract date from various formats using regex patterns"""
|
| 67 |
+
try:
|
| 68 |
+
# Try different patterns to match various date formats
|
| 69 |
+
|
| 70 |
+
# Pattern 1: Standard RFC format like "Mon, 14 Apr 2025 10:00:00 GMT"
|
| 71 |
+
pattern1 = r'(?:\w+,\s+)?(\d{1,2}\s+\w{3}\s+\d{4})'
|
| 72 |
+
match = re.search(pattern1, date_str)
|
| 73 |
+
if match:
|
| 74 |
+
date_str = match.group(1)
|
| 75 |
+
return pd.to_datetime(date_str, format='%d %b %Y')
|
| 76 |
+
|
| 77 |
+
# Pattern 2: Simple format like "14 Apr 2025"
|
| 78 |
+
pattern2 = r'(\d{1,2}\s+\w{3}\s+\d{4})'
|
| 79 |
+
match = re.search(pattern2, date_str)
|
| 80 |
+
if match:
|
| 81 |
+
return pd.to_datetime(match.group(1), format='%d %b %Y')
|
| 82 |
+
|
| 83 |
+
# Pattern 3: ISO format like "2025-04-14"
|
| 84 |
+
pattern3 = r'(\d{4}-\d{2}-\d{2})'
|
| 85 |
+
match = re.search(pattern3, date_str)
|
| 86 |
+
if match:
|
| 87 |
+
return pd.to_datetime(match.group(1))
|
| 88 |
+
|
| 89 |
+
# If none of the patterns match, return NaT
|
| 90 |
+
return pd.NaT
|
| 91 |
+
except:
|
| 92 |
+
return pd.NaT
|
| 93 |
+
|
| 94 |
+
def extract_and_clean_data(df):
|
| 95 |
+
"""Process and clean the feed data"""
|
| 96 |
+
if df.empty:
|
| 97 |
+
return df
|
| 98 |
+
|
| 99 |
+
try:
|
| 100 |
+
# Apply the custom date extraction function
|
| 101 |
+
df['date'] = df['Published'].apply(extract_date)
|
| 102 |
+
|
| 103 |
+
# Drop rows with invalid dates
|
| 104 |
+
df = df.dropna(subset=['date'])
|
| 105 |
+
|
| 106 |
+
# Drop the original 'Published' column
|
| 107 |
+
df.drop(columns=['Published'], inplace=True)
|
| 108 |
+
|
| 109 |
+
# Filter for the last 7 days
|
| 110 |
+
today = datetime.now()
|
| 111 |
+
seven_days_ago = today - timedelta(days=20)
|
| 112 |
+
df_filtered = df[(df['date'] >= seven_days_ago) & (df['date'] <= today)]
|
| 113 |
+
|
| 114 |
+
# Sort by date in descending order
|
| 115 |
+
df_filtered = df_filtered.sort_values(by='date', ascending=False)
|
| 116 |
+
|
| 117 |
+
# Clean HTML and limit description length in one step
|
| 118 |
+
df_filtered['Description'] = df_filtered['Description'].apply(
|
| 119 |
+
lambda x: clean_html(x)[:500].replace("\n", "")
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
return df_filtered
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
print(f"An error occurred while processing the data: {e}")
|
| 126 |
+
return pd.DataFrame()
|
| 127 |
+
|
| 128 |
+
def main():
|
| 129 |
+
"""
|
| 130 |
+
Fetches and processes RSS feed data from a predefined list of sources.
|
| 131 |
+
|
| 132 |
+
The function defines a dictionary of RSS feed URLs and their corresponding
|
| 133 |
+
source names. It fetches the RSS feeds using the `fetch_feed` function, then
|
| 134 |
+
processes and cleans the data using the `extract_and_clean_data` function.
|
| 135 |
+
The resulting DataFrame, `final_df`, contains cleaned and organized feed data.
|
| 136 |
+
|
| 137 |
+
Returns:
|
| 138 |
+
pd.DataFrame: A DataFrame containing cleaned and processed RSS feed data.
|
| 139 |
+
"""
|
| 140 |
+
links = {
|
| 141 |
+
"https://bair.berkeley.edu/blog/feed.xml": "The Berkeley Artificial Intelligence Research Blog",
|
| 142 |
+
"https://feeds.feedburner.com/nvidiablog": "NVDIA Blog",
|
| 143 |
+
"https://www.microsoft.com/en-us/research/feed/": "Microsoft Research",
|
| 144 |
+
"https://www.sciencedaily.com/rss/computers_math/artificial_intelligence.xml": "Science Daily",
|
| 145 |
+
"https://research.facebook.com/feed/": "META Research",
|
| 146 |
+
"https://openai.com/news/rss.xml": "OpenAI News",
|
| 147 |
+
"https://deepmind.google/blog/feed/basic/": "Google DeepMind Blog",
|
| 148 |
+
"https://news.mit.edu/rss/topic/artificial-intelligence2": "MIT News - Artificial intelligence",
|
| 149 |
+
"https://www.technologyreview.com/topic/artificial-intelligence/feed": "MIT Technology Review - Artificial intelligence",
|
| 150 |
+
"https://www.wired.com/feed/tag/ai/latest/rss": "Wired: Artificial Intelligence Latest",
|
| 151 |
+
"https://raw.githubusercontent.com/Olshansk/rss-feeds/refs/heads/main/feeds/feed_ollama.xml": "Ollama Blog",
|
| 152 |
+
"https://raw.githubusercontent.com/Olshansk/rss-feeds/refs/heads/main/feeds/feed_anthropic.xml": "Anthropic News",
|
| 153 |
+
"https://www.actuia.com/feed/": "ActuIA",
|
| 154 |
+
"https://news.google.com/rss/search?tbm=nws&q=intelligence+artificielle&oq=intelligence+artificielle&scoring=n&hl=fr&gl=FR&ceid=FR:fr": "Google News - Intelligence Artificielle",
|
| 155 |
+
"https://www.journaldunet.com/intelligence-artificielle/rss/": "JournalDunet - Intelligence Artificielle",
|
| 156 |
+
"https://medium.com/feed/tag/AI": "Medium - AI"
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
df = fetch_feed(links)
|
| 160 |
+
final_df = extract_and_clean_data(df)
|
| 161 |
+
|
| 162 |
+
return final_df
|
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,140 @@
|
|
| 1 |
-
import altair as alt
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
"
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datetime import datetime, timedelta
|
| 4 |
+
from fetch_data import main, fetch_feed, extract_and_clean_data
|
| 5 |
|
| 6 |
+
# Use Streamlit's built-in caching
|
| 7 |
+
@st.cache_data(ttl=60) # Cache for 1 minute
|
| 8 |
+
def get_data(links):
|
| 9 |
+
with st.spinner('Fetching latest AI news...'):
|
| 10 |
+
df = fetch_feed(links)
|
| 11 |
+
df = extract_and_clean_data(df)
|
| 12 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
def run_dashboard():
|
| 15 |
+
st.title("AI News Dashboard")
|
| 16 |
+
|
| 17 |
+
# Liste de base des flux RSS
|
| 18 |
+
default_links = {
|
| 19 |
+
"https://bair.berkeley.edu/blog/feed.xml": "The Berkeley Artificial Intelligence Research Blog",
|
| 20 |
+
"https://feeds.feedburner.com/nvidiablog": "NVDIA Blog",
|
| 21 |
+
"https://www.microsoft.com/en-us/research/feed/": "Microsoft Research",
|
| 22 |
+
"https://www.sciencedaily.com/rss/computers_math/artificial_intelligence.xml": "Science Daily",
|
| 23 |
+
"https://research.facebook.com/feed/": "META Research",
|
| 24 |
+
"https://openai.com/news/rss.xml": "OpenAI News",
|
| 25 |
+
"https://deepmind.google/blog/feed/basic/": "Google DeepMind Blog",
|
| 26 |
+
"https://news.mit.edu/rss/topic/artificial-intelligence2": "MIT News - Artificial intelligence",
|
| 27 |
+
"https://www.technologyreview.com/topic/artificial-intelligence/feed": "MIT Technology Review - Artificial intelligence",
|
| 28 |
+
"https://www.wired.com/feed/tag/ai/latest/rss": "Wired: Artificial Intelligence Latest",
|
| 29 |
+
"https://raw.githubusercontent.com/Olshansk/rss-feeds/refs/heads/main/feeds/feed_ollama.xml": "Ollama Blog",
|
| 30 |
+
"https://raw.githubusercontent.com/Olshansk/rss-feeds/refs/heads/main/feeds/feed_anthropic.xml": "Anthropic News",
|
| 31 |
+
"https://www.actuia.com/feed/": "ActuIA",
|
| 32 |
+
"https://news.google.com/rss/search?tbm=nws&q=intelligence+artificielle&oq=intelligence+artificielle&scoring=n&hl=fr&gl=FR&ceid=FR:fr": "Google News - Intelligence Artificielle",
|
| 33 |
+
"https://www.journaldunet.com/intelligence-artificielle/rss/": "JournalDunet - Intelligence Artificielle",
|
| 34 |
+
"https://medium.com/feed/tag/AI": "Medium - AI"
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
# Saisie utilisateur pour un flux RSS personnalisé
|
| 38 |
+
st.subheader("Ajouter un flux RSS personnalisé")
|
| 39 |
+
custom_rss_url = st.text_input("URL du flux RSS (ex: https://www.01net.com/jeux-video/feed/)", key="custom_rss_url")
|
| 40 |
+
links = default_links.copy()
|
| 41 |
|
| 42 |
+
# Gestion de l'ajout dynamique
|
| 43 |
+
if custom_rss_url:
|
| 44 |
+
if custom_rss_url not in links:
|
| 45 |
+
custom_tag = st.text_input("Nom/tag pour ce flux (ex: ActuAI)", key="custom_tag")
|
| 46 |
+
if custom_tag:
|
| 47 |
+
links[custom_rss_url] = custom_tag
|
| 48 |
+
st.success(f"Flux ajouté : {custom_tag}")
|
| 49 |
+
else:
|
| 50 |
+
st.info("Ce flux existe déjà dans la liste.")
|
| 51 |
|
| 52 |
+
# Add a refresh button
|
| 53 |
+
if st.button("Refresh Data"):
|
| 54 |
+
st.cache_data.clear()
|
| 55 |
+
st.rerun()
|
| 56 |
+
|
| 57 |
+
# Load data with caching
|
| 58 |
+
try:
|
| 59 |
+
df = get_data(links)
|
| 60 |
+
|
| 61 |
+
# Check if df is empty
|
| 62 |
+
if df.empty:
|
| 63 |
+
st.error("No news data available. Please try refreshing later.")
|
| 64 |
+
return
|
| 65 |
+
|
| 66 |
+
# Get min and max dates
|
| 67 |
+
min_date = df['date'].min()
|
| 68 |
+
max_date = df['date'].max()
|
| 69 |
+
|
| 70 |
+
# Create layout with columns
|
| 71 |
+
col1, col2 = st.columns(2)
|
| 72 |
+
|
| 73 |
+
with col1:
|
| 74 |
+
selected_dates = st.date_input(
|
| 75 |
+
"Choose Date Range",
|
| 76 |
+
value=(min_date, max_date),
|
| 77 |
+
min_value=min_date,
|
| 78 |
+
max_value=max_date
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Handle single date selection
|
| 82 |
+
if len(selected_dates) == 1:
|
| 83 |
+
start_date = selected_dates[0]
|
| 84 |
+
end_date = selected_dates[0]
|
| 85 |
+
else:
|
| 86 |
+
start_date, end_date = selected_dates
|
| 87 |
+
|
| 88 |
+
with col2:
|
| 89 |
+
# Get unique sources
|
| 90 |
+
all_sources = sorted(df['Source'].unique().tolist())
|
| 91 |
+
|
| 92 |
+
# Add "All" option at the beginning of the list
|
| 93 |
+
source_options = ["All"] + all_sources
|
| 94 |
+
|
| 95 |
+
# Use multiselect
|
| 96 |
+
selected_sources = st.multiselect(
|
| 97 |
+
"Choose one or more sources",
|
| 98 |
+
options=source_options
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Show button
|
| 102 |
+
if st.button("Show News", key="show"):
|
| 103 |
+
if not selected_sources:
|
| 104 |
+
st.error("Please select at least one source to display news.")
|
| 105 |
+
else:
|
| 106 |
+
# Convert dates to datetime
|
| 107 |
+
start_date = pd.to_datetime(start_date)
|
| 108 |
+
end_date = pd.to_datetime(end_date)
|
| 109 |
+
|
| 110 |
+
# Filter by date range
|
| 111 |
+
df_filtered = df[(df['date'] >= start_date) & (df['date'] <= end_date)]
|
| 112 |
+
|
| 113 |
+
# Handle "All" selection
|
| 114 |
+
if "All" in selected_sources:
|
| 115 |
+
# If "All" is selected, don't filter by source
|
| 116 |
+
pass
|
| 117 |
+
else:
|
| 118 |
+
# Filter by selected sources
|
| 119 |
+
df_filtered = df_filtered[df_filtered['Source'].isin(selected_sources)]
|
| 120 |
+
|
| 121 |
+
# Display results
|
| 122 |
+
if len(df_filtered) > 0:
|
| 123 |
+
st.success(f"Found {len(df_filtered)} news items")
|
| 124 |
+
|
| 125 |
+
# Show news as cards
|
| 126 |
+
for index, row in df_filtered.iterrows():
|
| 127 |
+
st.markdown(f"### [{row['Title']}]({row['Link']})")
|
| 128 |
+
st.write(f"**Source**: {row['Source']}")
|
| 129 |
+
st.write(f"**Description**: {row['Description']}")
|
| 130 |
+
st.write(f"**Date**: {row['date'].strftime('%Y-%m-%d')}")
|
| 131 |
+
st.markdown("---") # Add separator between cards
|
| 132 |
+
else:
|
| 133 |
+
st.warning("No news found with the selected filters. Please adjust your date range or source selection.")
|
| 134 |
+
|
| 135 |
+
except Exception as e:
|
| 136 |
+
st.error(f"An error occurred: {str(e)}")
|
| 137 |
+
st.info("Try refreshing the data using the button above.")
|
| 138 |
|
| 139 |
+
if __name__ == '__main__':
|
| 140 |
+
run_dashboard()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|