twobob commited on
Commit
3f0754f
·
1 Parent(s): cdfe9a1

Create new file

Browse files
Files changed (1) hide show
  1. app.py +77 -0
app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.system('pip install git+https://github.com/huggingface/transformers --upgrade')
3
+
4
+ import gradio as gr
5
+ from transformers import ImageGPTFeatureExtractor, ImageGPTForCausalImageModeling
6
+ import torch
7
+ import numpy as np
8
+ import requests
9
+ from PIL import Image
10
+ import matplotlib.pyplot as plt
11
+
12
+ feature_extractor = ImageGPTFeatureExtractor.from_pretrained("openai/imagegpt-medium")
13
+ model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-medium")
14
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
+ model.to(device)
16
+
17
+ # load image examples
18
+ urls = ['https://i.imgflip.com/4/4t0m5.jpg',
19
+ 'https://cdn.openai.com/image-gpt/completions/igpt-xl-miscellaneous-2-orig.png',
20
+ 'https://cdn.openai.com/image-gpt/completions/igpt-xl-miscellaneous-29-orig.png',
21
+ 'https://cdn.openai.com/image-gpt/completions/igpt-xl-openai-cooking-0-orig.png'
22
+ ]
23
+ for idx, url in enumerate(urls):
24
+ image = Image.open(requests.get(url, stream=True).raw)
25
+ image.save(f"image_{idx}.png")
26
+
27
+ def process_image(image):
28
+ # prepare 7 images, shape (7, 1024)
29
+ batch_size = 7
30
+ encoding = feature_extractor([image for _ in range(batch_size)], return_tensors="pt")
31
+
32
+ # create primers
33
+ samples = encoding.input_ids.numpy()
34
+ n_px = feature_extractor.size
35
+ clusters = feature_extractor.clusters
36
+ n_px_crop = 16
37
+ primers = samples.reshape(-1,n_px*n_px)[:,:n_px_crop*n_px] # crop top n_px_crop rows. These will be the conditioning tokens
38
+
39
+ # get conditioned image (from first primer tensor), padded with black pixels to be 32x32
40
+ primers_img = np.reshape(np.rint(127.5 * (clusters[primers[0]] + 1.0)), [n_px_crop,n_px, 3]).astype(np.uint8)
41
+ primers_img = np.pad(primers_img, pad_width=((0,16), (0,0), (0,0)), mode="constant")
42
+
43
+ # generate (no beam search)
44
+ context = np.concatenate((np.full((batch_size, 1), model.config.vocab_size - 1), primers), axis=1)
45
+ context = torch.tensor(context).to(device)
46
+ output = model.generate(input_ids=context, max_length=n_px*n_px + 1, temperature=1.0, do_sample=True, top_k=40)
47
+
48
+ # decode back to images (convert color cluster tokens back to pixels)
49
+ samples = output[:,1:].cpu().detach().numpy()
50
+ samples_img = [np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples]
51
+
52
+ samples_img = [primers_img] + samples_img
53
+
54
+ # stack images horizontally
55
+ row1 = np.hstack(samples_img[:4])
56
+ row2 = np.hstack(samples_img[4:])
57
+ result = np.vstack([row1, row2])
58
+
59
+ # return as PIL Image
60
+ completion = Image.fromarray(result)
61
+
62
+ return completion
63
+
64
+ title = "Interactive demo: ImageGPT"
65
+ description = "Demo for OpenAI's ImageGPT: Generative Pretraining from Pixels. To use it, simply upload an image or use the example image below and click 'submit'. Results will show up in a few seconds."
66
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>ImageGPT: Generative Pretraining from Pixels</a> | <a href='https://openai.com/blog/image-gpt/'>Official blog</a></p>"
67
+ examples =[f"image_{idx}.png" for idx in range(len(urls))]
68
+
69
+ iface = gr.Interface(fn=process_image,
70
+ inputs=gr.inputs.Image(type="pil"),
71
+ outputs=gr.outputs.Image(type="pil", label="Model input + completions"),
72
+ title=title,
73
+ description=description,
74
+ article=article,
75
+ examples=examples,
76
+ enable_queue=True)
77
+ iface.launch(debug=True)