Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
3 |
+
import requests
|
4 |
+
import os
|
5 |
+
from moviepy.editor import VideoFileClip
|
6 |
+
import tempfile
|
7 |
+
import re
|
8 |
+
from urllib.parse import urlparse
|
9 |
+
from gradio import Progress
|
10 |
+
from pathlib import Path
|
11 |
+
import torch
|
12 |
+
import shutil # Import shutil for explicit temporary directory cleanup
|
13 |
+
import soundfile as sf # Import soundfile for explicit audio loading
|
14 |
+
|
15 |
+
# Load the audio classification model for English accents
|
16 |
+
pipe = pipeline("audio-classification", model="dima806/english_accents_classification")
|
17 |
+
|
18 |
+
# Load the language detection model
|
19 |
+
language_detector = pipeline("text-classification", model="alexneakameni/language_detection")
|
20 |
+
|
21 |
+
# Load a small ASR (Automatic Speech Recognition) model for transcribing audio clips
|
22 |
+
# This is used to get text from audio for language detection.
|
23 |
+
# Using 'openai/whisper-tiny.en' for a faster, English-focused transcription.
|
24 |
+
# Ensure to move model to GPU if available for faster inference.
|
25 |
+
device = 0 if torch.cuda.is_available() else -1
|
26 |
+
# Corrected ASR model ID to a valid Hugging Face model
|
27 |
+
asr_model_id = "openai/whisper-tiny.en"
|
28 |
+
asr_model = AutoModelForSpeechSeq2Seq.from_pretrained(asr_model_id)
|
29 |
+
asr_processor = AutoProcessor.from_pretrained(asr_model_id)
|
30 |
+
asr_pipe = pipeline(
|
31 |
+
"automatic-speech-recognition",
|
32 |
+
model=asr_model,
|
33 |
+
tokenizer=asr_processor.tokenizer,
|
34 |
+
feature_extractor=asr_processor.feature_extractor,
|
35 |
+
device=device
|
36 |
+
)
|
37 |
+
|
38 |
+
def is_valid_url(url):
|
39 |
+
"""
|
40 |
+
Checks if the given URL is valid and from allowed domains (MP4, Loom, or Google Drive).
|
41 |
+
Args:
|
42 |
+
url (str): The URL to validate.
|
43 |
+
Returns:
|
44 |
+
bool: True if the URL is valid and allowed, False otherwise.
|
45 |
+
"""
|
46 |
+
if not url:
|
47 |
+
return False
|
48 |
+
try:
|
49 |
+
result = urlparse(url)
|
50 |
+
if not all([result.scheme, result.netloc]):
|
51 |
+
return False
|
52 |
+
|
53 |
+
allowed_domains = [
|
54 |
+
'loom.com',
|
55 |
+
'cdn.loom.com',
|
56 |
+
'www.dropbox.com',
|
57 |
+
'dl.dropboxusercontent.com',
|
58 |
+
'drive.google.com' # Added Google Drive domain
|
59 |
+
]
|
60 |
+
|
61 |
+
# Check if the domain is in our allowed list
|
62 |
+
is_allowed_domain = any(domain in result.netloc.lower() for domain in allowed_domains)
|
63 |
+
|
64 |
+
# Check if the path part of the URL ends with .mp4
|
65 |
+
ends_with_mp4 = result.path.lower().endswith('.mp4')
|
66 |
+
|
67 |
+
if is_allowed_domain:
|
68 |
+
if ends_with_mp4:
|
69 |
+
return True
|
70 |
+
elif 'drive.google.com' in result.netloc.lower():
|
71 |
+
# Check for typical Google Drive patterns for shared files or download links
|
72 |
+
return '/file/d/' in result.path or '/uc' in result.path
|
73 |
+
elif any(domain in result.netloc.lower() for domain in ['loom.com', 'cdn.loom.com']):
|
74 |
+
return True # Allow Loom URLs even if they don't end in .mp4
|
75 |
+
elif ends_with_mp4:
|
76 |
+
# Allow direct .mp4 links from other domains if they end with .mp4
|
77 |
+
return True
|
78 |
+
|
79 |
+
return False
|
80 |
+
except Exception:
|
81 |
+
return False
|
82 |
+
|
83 |
+
def is_valid_file(file_obj):
|
84 |
+
"""
|
85 |
+
Checks if the uploaded file object represents a valid video file format.
|
86 |
+
Args:
|
87 |
+
file_obj (gr.File): The Gradio file object.
|
88 |
+
Returns:
|
89 |
+
bool: True if the file is a supported video format, False otherwise.
|
90 |
+
"""
|
91 |
+
if not file_obj:
|
92 |
+
return False
|
93 |
+
# Get the file extension from the uploaded file object's name
|
94 |
+
file_path = file_obj.name
|
95 |
+
# Check if the file extension is one of the supported video formats
|
96 |
+
return Path(file_path).suffix.lower() in ['.mp4', '.mov', '.avi', '.mkv']
|
97 |
+
|
98 |
+
def download_file(url, save_path, progress=Progress()):
|
99 |
+
"""
|
100 |
+
Downloads a video file from a given URL to a specified path.
|
101 |
+
Raises ValueError if the URL is invalid, ConnectionError if download fails.
|
102 |
+
Args:
|
103 |
+
url (str): The URL of the video to download.
|
104 |
+
save_path (str): The local path to save the downloaded video.
|
105 |
+
progress (gradio.Progress): Gradio progress tracker for UI updates.
|
106 |
+
"""
|
107 |
+
if not is_valid_url(url):
|
108 |
+
raise ValueError("Invalid URL. Only .mp4 files or Loom videos are accepted.")
|
109 |
+
|
110 |
+
response = requests.get(url, stream=True)
|
111 |
+
# Check if the download was successful (HTTP status code 200)
|
112 |
+
if response.status_code != 200:
|
113 |
+
raise ConnectionError(f"Failed to download video (HTTP {response.status_code})")
|
114 |
+
|
115 |
+
# Get the total size of the file for progress tracking
|
116 |
+
total_size = int(response.headers.get('content-length', 0))
|
117 |
+
downloaded = 0
|
118 |
+
|
119 |
+
# Write the downloaded content to the specified save path in chunks
|
120 |
+
with open(save_path, 'wb') as f:
|
121 |
+
for chunk in response.iter_content(chunk_size=8192):
|
122 |
+
if chunk: # Filter out keep-alive new chunks
|
123 |
+
f.write(chunk)
|
124 |
+
downloaded += len(chunk)
|
125 |
+
if total_size > 0:
|
126 |
+
# Update progress bar based on downloaded percentage
|
127 |
+
progress(downloaded / total_size, desc="📥 Downloading video...")
|
128 |
+
else:
|
129 |
+
# If total size is unknown, just show a general downloading message
|
130 |
+
progress(0, desc="📥 Downloading video (size unknown)...")
|
131 |
+
|
132 |
+
def extract_audio_full(video_path, progress=Progress()):
|
133 |
+
"""
|
134 |
+
Extracts the full duration of audio from a video file and saves it as a WAV file.
|
135 |
+
Uses tempfile.NamedTemporaryFile to ensure the file persists for Gradio.
|
136 |
+
Args:
|
137 |
+
video_path (str): Path to the input video file.
|
138 |
+
progress (gradio.Progress): Gradio progress tracker for UI updates.
|
139 |
+
Returns:
|
140 |
+
str: The path to the extracted audio file.
|
141 |
+
"""
|
142 |
+
try:
|
143 |
+
progress(0, desc="🔊 Extracting full audio for playback...")
|
144 |
+
video = VideoFileClip(video_path)
|
145 |
+
|
146 |
+
# Create a temporary WAV file that Gradio can manage
|
147 |
+
temp_audio_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
148 |
+
audio_path = temp_audio_file.name
|
149 |
+
temp_audio_file.close() # Close the file handle immediately so moviepy can write to it
|
150 |
+
|
151 |
+
audio_clip = video.audio
|
152 |
+
audio_clip.write_audiofile(audio_path, fps=16000, logger=None)
|
153 |
+
video.close()
|
154 |
+
audio_clip.close()
|
155 |
+
progress(1.0)
|
156 |
+
return audio_path
|
157 |
+
except Exception as e:
|
158 |
+
raise Exception(f"Full audio extraction failed: {str(e)}")
|
159 |
+
|
160 |
+
def extract_audio_clip(video_path, audio_path, duration, progress=Progress()):
|
161 |
+
"""
|
162 |
+
Extracts a specified duration of audio from a video file and saves it as a WAV file.
|
163 |
+
Args:
|
164 |
+
video_path (str): Path to the input video file.
|
165 |
+
audio_path (str): Path to save the extracted audio WAV file.
|
166 |
+
duration (int): The duration of audio to extract in seconds.
|
167 |
+
progress (gradio.Progress): Gradio progress tracker for UI updates.
|
168 |
+
Returns:
|
169 |
+
str: The path to the extracted audio file.
|
170 |
+
"""
|
171 |
+
try:
|
172 |
+
progress(0, desc=f"🔊 Extracting {duration} seconds of audio for analysis...")
|
173 |
+
video = VideoFileClip(video_path)
|
174 |
+
# Ensure the subclip duration does not exceed the video's actual duration
|
175 |
+
clip_duration = min(duration, video.duration)
|
176 |
+
audio_clip = video.audio.subclip(0, clip_duration)
|
177 |
+
audio_clip.write_audiofile(audio_path, fps=16000, logger=None)
|
178 |
+
video.close()
|
179 |
+
audio_clip.close()
|
180 |
+
progress(1.0)
|
181 |
+
return audio_path
|
182 |
+
except Exception as e:
|
183 |
+
raise Exception(f"Audio clip extraction failed: {str(e)}")
|
184 |
+
|
185 |
+
def transcribe_audio(audio_path_clip, progress=Progress()):
|
186 |
+
"""
|
187 |
+
Transcribes a short audio clip to text using the ASR pipeline.
|
188 |
+
Args:
|
189 |
+
audio_path_clip (str): Path to the short audio clip.
|
190 |
+
Returns:
|
191 |
+
str: The transcribed text.
|
192 |
+
"""
|
193 |
+
try:
|
194 |
+
progress(0, desc="📝 Transcribing audio for language detection...")
|
195 |
+
|
196 |
+
# Load audio using soundfile
|
197 |
+
audio_input, sampling_rate = sf.read(audio_path_clip)
|
198 |
+
|
199 |
+
# Ensure the audio is mono if the model expects it (Whisper typically does)
|
200 |
+
if audio_input.ndim > 1:
|
201 |
+
audio_input = audio_input.mean(axis=1) # Convert to mono
|
202 |
+
|
203 |
+
# Process audio with the ASR processor
|
204 |
+
# This handles resampling, padding, and feature extraction to match model requirements
|
205 |
+
inputs = asr_processor(audio_input, sampling_rate=sampling_rate, return_tensors="pt")
|
206 |
+
|
207 |
+
# Move inputs to the correct device
|
208 |
+
if device != -1:
|
209 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
210 |
+
|
211 |
+
# Generate transcription with the ASR model
|
212 |
+
with torch.no_grad():
|
213 |
+
# max_new_tokens can be adjusted based on expected transcription length
|
214 |
+
# For short clips (15s), 128 is usually more than enough
|
215 |
+
output_tokens = asr_model.generate(**inputs, max_new_tokens=128)
|
216 |
+
|
217 |
+
text = asr_processor.tokenizer.batch_decode(output_tokens, skip_special_tokens=True)[0]
|
218 |
+
|
219 |
+
progress(1.0)
|
220 |
+
return text
|
221 |
+
except Exception as e:
|
222 |
+
print(f"Transcription failed: {e}")
|
223 |
+
return "" # Return empty string on failure
|
224 |
+
|
225 |
+
def classify_audio(audio_path, progress=Progress()):
|
226 |
+
"""
|
227 |
+
Classifies the accent in an audio file using the pre-loaded Hugging Face pipeline.
|
228 |
+
Args:
|
229 |
+
audio_path (str): Path to the input audio file.
|
230 |
+
Returns:
|
231 |
+
list: A list of dictionaries containing accent labels and confidence scores.
|
232 |
+
"""
|
233 |
+
try:
|
234 |
+
progress(0, desc="🔍 Analyzing accent - please be patient...")
|
235 |
+
result = pipe(audio_path)
|
236 |
+
progress(1.0) # Mark completion
|
237 |
+
return result
|
238 |
+
except Exception as e:
|
239 |
+
raise Exception(f"Classification failed: {str(e)}")
|
240 |
+
|
241 |
+
def process_video_unified(video_source, analysis_duration, progress=Progress()):
|
242 |
+
"""
|
243 |
+
Processes either a video URL or an uploaded video file to classify accent.
|
244 |
+
Includes language detection before accent classification.
|
245 |
+
Args:
|
246 |
+
video_source (str or gr.File): The input, either a URL string or a Gradio File object.
|
247 |
+
analysis_duration (int): The duration of audio to analyze for accent classification in seconds.
|
248 |
+
progress (gradio.Progress): Gradio progress tracker for UI updates.
|
249 |
+
Returns:
|
250 |
+
tuple: (language_status_html, html_output, audio_path, error_flag)
|
251 |
+
language_status_html (str): HTML string displaying language detection status.
|
252 |
+
html_output (str): HTML string displaying accent results or error.
|
253 |
+
audio_path (str or None): Path to extracted full audio if successful, else None.
|
254 |
+
error_flag (bool): True if an error occurred, False otherwise.
|
255 |
+
"""
|
256 |
+
temp_dir = None
|
257 |
+
full_audio_path = None # Initialize to None
|
258 |
+
try:
|
259 |
+
temp_dir = tempfile.mkdtemp() # Create temp dir for intermediate files (video, clipped audio)
|
260 |
+
video_path = os.path.join(temp_dir, "video.mp4")
|
261 |
+
|
262 |
+
# Determine if input is a URL string or an uploaded Gradio File object
|
263 |
+
if isinstance(video_source, str) and video_source.startswith(('http://', 'https://')):
|
264 |
+
if not is_valid_url(video_source):
|
265 |
+
raise ValueError("Invalid URL. Only .mp4 files or Loom videos are accepted.")
|
266 |
+
download_file(video_source, video_path, progress)
|
267 |
+
elif hasattr(video_source, 'name'):
|
268 |
+
if not is_valid_file(video_source):
|
269 |
+
raise ValueError("Invalid file format. Please upload a video file (MP4)")
|
270 |
+
with open(video_source.name, 'rb') as src_file:
|
271 |
+
with open(video_path, 'wb') as dest_file:
|
272 |
+
dest_file.write(src_file.read())
|
273 |
+
else:
|
274 |
+
raise ValueError("Unsupported input type. Please provide a video URL or upload a file.")
|
275 |
+
|
276 |
+
# Verify that the video file exists after download/upload
|
277 |
+
if not os.path.exists(video_path):
|
278 |
+
raise Exception("Video processing failed: Video file not found after download/upload.")
|
279 |
+
|
280 |
+
# Extract full audio for playback using tempfile.NamedTemporaryFile
|
281 |
+
full_audio_path = extract_audio_full(video_path, progress)
|
282 |
+
|
283 |
+
# Extract a short clip for transcription and language detection (e.g., first 15 seconds)
|
284 |
+
transcription_clip_duration = 15
|
285 |
+
audio_for_transcription_path = os.path.join(temp_dir, "audio_for_transcription.wav")
|
286 |
+
extract_audio_clip(video_path, audio_for_transcription_path, transcription_clip_duration, progress)
|
287 |
+
|
288 |
+
if not os.path.exists(full_audio_path):
|
289 |
+
raise Exception("Audio extraction failed: Full audio file not found.")
|
290 |
+
if not os.path.exists(audio_for_transcription_path):
|
291 |
+
raise Exception("Audio extraction failed: Clipped audio for transcription not found.")
|
292 |
+
|
293 |
+
# Transcribe the short audio clip
|
294 |
+
transcribed_text = transcribe_audio(audio_for_transcription_path, progress)
|
295 |
+
if not transcribed_text.strip():
|
296 |
+
language_status_html = "<p style='color: orange; font-weight: bold;'>⚠️ Could not transcribe audio for language detection. Please ensure audio is clear.</p>"
|
297 |
+
# If transcription fails, we can't detect language, so we'll proceed with accent classification
|
298 |
+
# but provide a warning. Or, you could choose to stop here. For now, let's proceed.
|
299 |
+
else:
|
300 |
+
# Perform language detection
|
301 |
+
lang_detection_result = language_detector(transcribed_text)
|
302 |
+
detected_language = lang_detection_result[0]['label']
|
303 |
+
lang_confidence = lang_detection_result[0]['score']
|
304 |
+
|
305 |
+
# Check if detected language is English or eng_Latn with a reasonable confidence
|
306 |
+
if (detected_language.lower() == 'english' or detected_language.lower() == 'eng_latn') and lang_confidence > 0.7: # Added 'eng_Latn' check
|
307 |
+
language_status_html = f"<p style='color: green; font-weight: bold;'>✅ Verified English Language (Confidence: {lang_confidence*100:.2f}%)</p>"
|
308 |
+
else:
|
309 |
+
language_status_html = f"<p style='color: red; font-weight: bold;'>⚠️ Detected language: {detected_language.capitalize()} (Confidence: {lang_confidence*100:.2f}%). Please provide English audio for accent classification.</p>"
|
310 |
+
# If not English, return early with an error message and skip accent classification
|
311 |
+
return language_status_html, "", full_audio_path, True # Set error flag to True
|
312 |
+
|
313 |
+
# Extract audio clip for accent classification (based on analysis_duration slider)
|
314 |
+
audio_for_classification_path = os.path.join(temp_dir, "audio_for_classification.wav")
|
315 |
+
extract_audio_clip(video_path, audio_for_classification_path, analysis_duration, progress)
|
316 |
+
|
317 |
+
if not os.path.exists(audio_for_classification_path):
|
318 |
+
raise Exception("Audio extraction failed: Clipped audio for classification not found.")
|
319 |
+
|
320 |
+
# Classify the extracted audio for accent
|
321 |
+
result = classify_audio(audio_for_classification_path, progress)
|
322 |
+
|
323 |
+
if not result:
|
324 |
+
return language_status_html, "<p style='color: red; font-weight: bold;'>⚠️ No accent prediction returned</p>", full_audio_path, True
|
325 |
+
|
326 |
+
# Build results table for display
|
327 |
+
# Adjusted table width to 'fit-content' and individual column widths
|
328 |
+
table = """
|
329 |
+
<table style='width: fit-content; max-width: 100%; border-collapse: collapse; font-family: Arial, sans-serif; margin-top: 1em;'>
|
330 |
+
<thead>
|
331 |
+
<tr style='border-bottom: 2px solid #4CAF50; background-color: #f2f2f2;'>
|
332 |
+
<th style='text-align:left; padding: 8px; font-size: 1.1em; color: #333; width: auto; min-width: 50px;'>Rank</th>
|
333 |
+
<th style='text-align:left; padding: 8px; font-size: 1.1em; color: #333; width: auto; min-width: 100px;'>Accent</th>
|
334 |
+
<th style='text-align:left; padding: 8px; font-size: 1.1em; color: #333; width: auto; min-width: 180px;'>Confidence (%)</th>
|
335 |
+
<th style='text-align:left; padding: 8px; font-size: 1.1em; color: #333; width: auto; min-width: 80px;'>Score</th>
|
336 |
+
</tr>
|
337 |
+
</thead>
|
338 |
+
<tbody>
|
339 |
+
"""
|
340 |
+
|
341 |
+
for i, r in enumerate(result):
|
342 |
+
label = r['label'].capitalize()
|
343 |
+
score = r['score']
|
344 |
+
score_formatted_percent = f"{score * 100:.2f}%"
|
345 |
+
score_formatted_raw = f"{score:.4f}"
|
346 |
+
if i == 0:
|
347 |
+
row = f"""
|
348 |
+
<tr style='background-color:#d4edda; font-weight: bold; color: #155724;'>
|
349 |
+
<td style='padding: 8px; border-bottom: 1px solid #c3e6cb; width: auto; min-width: 50px;'>#{i+1}</td>
|
350 |
+
<td style='padding: 8px; border-bottom: 1px solid #c3e6cb; width: auto; min-width: 100px;'>{label}</td>
|
351 |
+
<td style='padding: 8px; border-bottom: 1px solid #c3e6cb; width: auto; min-width: 180px;'>
|
352 |
+
<div style='display: flex; align-items: center;'>
|
353 |
+
<span style='width: auto; display: inline-block;'>{score_formatted_percent}</span>
|
354 |
+
<progress value='{score * 100}' max='100' style='width: 100%; margin-left: 10px;'></progress>
|
355 |
+
</div>
|
356 |
+
</td>
|
357 |
+
<td style='padding: 8px; border-bottom: 1px solid #c3e6cb; width: auto; min-width: 80px;'>
|
358 |
+
<span style='width: auto; display: inline-block;'>{score_formatted_raw}</span>
|
359 |
+
</td>
|
360 |
+
</tr>
|
361 |
+
"""
|
362 |
+
else:
|
363 |
+
row = f"""
|
364 |
+
<tr style='color: #333;'>
|
365 |
+
<td style='padding: 8px; border-bottom: 1px solid #ddd; width: auto; min-width: 50px;'>#{i+1}</td>
|
366 |
+
<td style='padding: 8px; border-bottom: 1px solid #ddd; width: auto; min-width: 100px;'>{label}</td>
|
367 |
+
<td style='padding: 8px; border-bottom: 1px solid #ddd; width: auto; min-width: 180px;'>
|
368 |
+
<div style='display: flex; align-items: center;'>
|
369 |
+
<span style='width: auto; display: inline-block;'>{score_formatted_percent}</span>
|
370 |
+
<progress value='{score * 100}' max='100' style='width: 100%; margin-left: 10px;'></progress>
|
371 |
+
</div>
|
372 |
+
</td>
|
373 |
+
<td style='padding: 8px; border-bottom: 1px solid #ddd; width: auto; min-width: 80px;'>
|
374 |
+
<span style='display: inline-block;'>{score_formatted_raw}</span>
|
375 |
+
</td>
|
376 |
+
</tr>
|
377 |
+
"""
|
378 |
+
table += row
|
379 |
+
|
380 |
+
table += "</tbody></table>"
|
381 |
+
|
382 |
+
top_result = result[0]
|
383 |
+
html_output = f"""
|
384 |
+
<div style='font-family: Arial, sans-serif;'>
|
385 |
+
<h2 style='color: #2E7D32; margin-bottom: 0.5em;'>
|
386 |
+
🎤 Predicted Accent: <span style='font-weight:bold'>{top_result['label'].capitalize()}</span>
|
387 |
+
<span style='font-size: 0.8em; color: #555; font-weight: normal;'>
|
388 |
+
(Confidence: {top_result['score']*100:.2f}%)
|
389 |
+
</span>
|
390 |
+
</h2>
|
391 |
+
{table}
|
392 |
+
</div>
|
393 |
+
"""
|
394 |
+
|
395 |
+
# Return language status, accent results HTML, full audio path, and no error flag
|
396 |
+
return language_status_html, html_output, full_audio_path, False
|
397 |
+
|
398 |
+
except Exception as e:
|
399 |
+
# If any error occurs, return an error message and set the error flag
|
400 |
+
return "", f"<p style='color: red; font-weight: bold;'>⚠️ Error: {str(e)}</p>", None, True
|
401 |
+
finally:
|
402 |
+
# Explicitly clean up the temporary directory created for intermediate files.
|
403 |
+
# The full_audio_path is now managed by NamedTemporaryFile and Gradio.
|
404 |
+
if temp_dir and os.path.exists(temp_dir):
|
405 |
+
shutil.rmtree(temp_dir)
|
406 |
+
|
407 |
+
|
408 |
+
# Define a custom Gradio theme for improved aesthetics
|
409 |
+
# This theme inherits from the default theme and overrides specific properties.
|
410 |
+
my_theme = gr.themes.Default().set(
|
411 |
+
# Background colors: A light grey for the primary background, white for inner blocks
|
412 |
+
background_fill_primary="#f0f2f5",
|
413 |
+
background_fill_secondary="#ffffff",
|
414 |
+
# Border for a cleaner look
|
415 |
+
border_color_primary="#e0e0e0",
|
416 |
+
# Button styling for a consistent look
|
417 |
+
# Changed primary button color to a darker, muted green
|
418 |
+
button_primary_background_fill="#4CAF50", # A standard green
|
419 |
+
button_primary_background_fill_hover="#66BB6A", # A slightly lighter green on hover
|
420 |
+
button_primary_text_color="#ffffff", # White text for primary buttons
|
421 |
+
# Changed secondary button color to a darker, muted green
|
422 |
+
button_secondary_background_fill="#4CAF50", # A standard green
|
423 |
+
button_secondary_background_fill_hover="#66BB6A", # A slightly lighter green on hover
|
424 |
+
button_secondary_text_color="#ffffff", # White text for secondary buttons
|
425 |
+
|
426 |
+
# Accent color for sliders and other accent elements
|
427 |
+
color_accent="#2196F3", # Blue for accent elements like sliders
|
428 |
+
color_accent_soft="#BBDEFB", # Lighter blue for soft accent elements
|
429 |
+
)
|
430 |
+
|
431 |
+
|
432 |
+
# Gradio app interface definition
|
433 |
+
with gr.Blocks(theme=my_theme) as app: # Apply the custom theme here
|
434 |
+
gr.Markdown("""
|
435 |
+
<div style='font-family: Arial, sans-serif;'>
|
436 |
+
<h1 style='color: #2E7D32;'>🎤 English Accent Classifier</h1>
|
437 |
+
<p>Analyze English accents from either:</p>
|
438 |
+
<ul>
|
439 |
+
<li>A video URL (MP4 or Loom videos)</li>
|
440 |
+
<li>Or upload a video file from your computer</li>
|
441 |
+
</ul>
|
442 |
+
<p>The accent analysis will be performed on the first <strong>60 seconds</strong> of audio by default, after language detection.</p>
|
443 |
+
<p>The analysis may take some time depending on the video size and your chosen analysis duration. Please be patient while we process your video.</p>
|
444 |
+
<p><strong>Supported file formats:</strong> MP4 </p>
|
445 |
+
<p style='font-size: 0.9em; color: #666;'>
|
446 |
+
<strong>Note:</strong> This application requires <a href='https://ffmpeg.org/download.html' target='_blank' style='color: #2E7D32;'>FFmpeg</a> to be installed on your system to process video and audio files.
|
447 |
+
</p>
|
448 |
+
</div>
|
449 |
+
""")
|
450 |
+
|
451 |
+
with gr.Row():
|
452 |
+
with gr.Column(scale=1):
|
453 |
+
url_input = gr.Textbox(
|
454 |
+
label="🔗 Video URL (MP4 or Loom)",
|
455 |
+
placeholder="Paste URL here..."
|
456 |
+
)
|
457 |
+
video_input = gr.File(
|
458 |
+
label="📁 Upload Video File",
|
459 |
+
file_types=["video"],
|
460 |
+
interactive=True
|
461 |
+
)
|
462 |
+
with gr.Column(scale=1):
|
463 |
+
analysis_duration = gr.Slider(
|
464 |
+
minimum=5,
|
465 |
+
maximum=120,
|
466 |
+
step=5,
|
467 |
+
value=60,
|
468 |
+
label="Accent Analysis Duration (seconds)",
|
469 |
+
info="Analyze the first N seconds of audio for accent classification."
|
470 |
+
)
|
471 |
+
with gr.Row():
|
472 |
+
submit_btn = gr.Button("Analyze Video", variant="primary")
|
473 |
+
clear_btn = gr.Button("Clear Input")
|
474 |
+
|
475 |
+
status_box = gr.Textbox(
|
476 |
+
label="Status",
|
477 |
+
placeholder="Waiting for video input...",
|
478 |
+
interactive=False,
|
479 |
+
visible=True
|
480 |
+
)
|
481 |
+
progress_bar = gr.Slider(
|
482 |
+
visible=False,
|
483 |
+
label="Processing Progress",
|
484 |
+
interactive=False
|
485 |
+
)
|
486 |
+
|
487 |
+
# Placing outputs in a new row to allow for better vertical stacking on smaller screens
|
488 |
+
# and horizontal arrangement on larger screens.
|
489 |
+
with gr.Row():
|
490 |
+
# Using gr.Column to contain the language status and audio player
|
491 |
+
with gr.Column(scale=1, min_width=300): # Added min_width for better control
|
492 |
+
language_status_html = gr.HTML(label="Language Detection Status", visible=True)
|
493 |
+
audio_player = gr.Audio(label="Extracted Audio (Full Duration)", visible=True)
|
494 |
+
# Using gr.Column for the main results table and error output
|
495 |
+
with gr.Column(scale=2, min_width=400): # Added min_width for better control
|
496 |
+
output_html = gr.HTML()
|
497 |
+
error_output = gr.HTML(visible=False)
|
498 |
+
|
499 |
+
def unified_processing_fn(video_url, video_file, analysis_duration, progress=Progress()):
|
500 |
+
video_source = video_url if video_url else video_file
|
501 |
+
|
502 |
+
yield (
|
503 |
+
gr.Textbox(value="⏳ Processing started - please be patient...", visible=True),
|
504 |
+
gr.Slider(visible=True, value=0),
|
505 |
+
gr.HTML(value="", visible=True), # Clear language status
|
506 |
+
gr.HTML(value="", visible=False), # Hide previous HTML output
|
507 |
+
gr.Audio(value=None, visible=True, label="Extracted Audio (Full Duration)"),
|
508 |
+
gr.HTML(value="", visible=False) # Hide previous error output
|
509 |
+
)
|
510 |
+
|
511 |
+
try:
|
512 |
+
lang_status, html, audio_path, error = process_video_unified(video_source, analysis_duration, progress)
|
513 |
+
|
514 |
+
if error:
|
515 |
+
yield (
|
516 |
+
gr.Textbox(value="❌ Processing failed", visible=True),
|
517 |
+
gr.Slider(visible=False),
|
518 |
+
gr.HTML(value=lang_status, visible=True),
|
519 |
+
gr.HTML(value="", visible=False),
|
520 |
+
gr.Audio(value=audio_path, visible=True, label="Extracted Audio (Full Duration)"),
|
521 |
+
gr.HTML(value=html, visible=True)
|
522 |
+
)
|
523 |
+
else:
|
524 |
+
yield (
|
525 |
+
gr.Textbox(value="✅ Analysis complete!", visible=True),
|
526 |
+
gr.Slider(value=1.0, visible=False),
|
527 |
+
gr.HTML(value=lang_status, visible=True),
|
528 |
+
gr.HTML(value=html, visible=True),
|
529 |
+
gr.Audio(value=audio_path, visible=True, label="Extracted Audio (Full Duration)"),
|
530 |
+
gr.HTML(visible=False)
|
531 |
+
)
|
532 |
+
except Exception as e:
|
533 |
+
yield (
|
534 |
+
gr.Textbox(value="❌ An unexpected error occurred!", visible=True),
|
535 |
+
gr.Slider(visible=False),
|
536 |
+
gr.HTML(value="", visible=True),
|
537 |
+
gr.HTML(value="", visible=False),
|
538 |
+
gr.Audio(value=None, visible=True, label="Extracted Audio (Full Duration)"),
|
539 |
+
gr.HTML(value=f"<p style='color: red; font-weight: bold;'>⚠️ Unexpected Error: {str(e)}</p>", visible=True)
|
540 |
+
)
|
541 |
+
|
542 |
+
|
543 |
+
def clear_inputs():
|
544 |
+
return (
|
545 |
+
"", # url_input
|
546 |
+
None, # video_input
|
547 |
+
60, # analysis_duration (reset to default)
|
548 |
+
"Waiting for video input...", # status_box
|
549 |
+
gr.Slider(visible=False, value=0), # progress_bar (hidden and reset)
|
550 |
+
"", # language_status_html (clear)
|
551 |
+
"", # output_html (clear)
|
552 |
+
gr.Audio(visible=True, value=None, label="Extracted Audio (Full Duration)"),
|
553 |
+
"" # error_output (clear)
|
554 |
+
)
|
555 |
+
|
556 |
+
submit_btn.click(
|
557 |
+
fn=unified_processing_fn,
|
558 |
+
inputs=[url_input, video_input, analysis_duration],
|
559 |
+
outputs=[status_box, progress_bar, language_status_html, output_html, audio_player, error_output],
|
560 |
+
api_name="classify_video"
|
561 |
+
)
|
562 |
+
|
563 |
+
clear_btn.click(
|
564 |
+
fn=clear_inputs,
|
565 |
+
inputs=[],
|
566 |
+
outputs=[url_input, video_input, analysis_duration, status_box, progress_bar, language_status_html, output_html, audio_player, error_output],
|
567 |
+
)
|
568 |
+
|
569 |
+
if __name__ == "__main__":
|
570 |
+
app.launch(share=True)
|