File size: 2,545 Bytes
6562504
e8254f1
6562504
21bac99
53d0cb7
e8254f1
53d0cb7
e8254f1
53d0cb7
 
 
 
 
e8254f1
 
2971ea5
6562504
 
 
5742ae6
6562504
 
 
 
 
 
5742ae6
6562504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8254f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6562504
 
 
 
 
 
 
 
5742ae6
6562504
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import streamlit as st
import os
from dotenv import load_dotenv
from airllm import AutoModel

# Load environment variables
load_dotenv()

# Retrieve the API token from the environment variables
api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")

# Initialize model and tokenizer using the AutoModel from AirLLM
MAX_LENGTH = 128
model = AutoModel.from_pretrained("internlm/internlm2_5-7b")

# Streamlit app configuration
st.set_page_config(
    page_title="Conversational Chatbot with internlm2_5-7b-chat and AirLLM",
    page_icon="🤖",
    layout="wide",
    initial_sidebar_state="expanded",
)

# App title
st.title("Conversational Chatbot with internlm2_5-7b-chat and AirLLM")

# Sidebar configuration
st.sidebar.header("Chatbot Configuration")
theme = st.sidebar.selectbox("Choose a theme", ["Default", "Dark", "Light"])

# Set theme based on user selection
if theme == "Dark":
    st.markdown(
        """
        <style>
        .reportview-container {
            background: #2E2E2E;
            color: #FFFFFF;
        }
        .sidebar .sidebar-content {
            background: #333333;
        }
        </style>
        """,
        unsafe_allow_html=True
    )
elif theme == "Light":
    st.markdown(
        """
        <style>
        .reportview-container {
            background: #FFFFFF;
            color: #000000;
        }
        .sidebar .sidebar-content {
            background: #F5F5F5;
        }
        </style>
        """,
        unsafe_allow_html=True
    )

# Chat input and output
user_input = st.text_input("You: ", "")
if st.button("Send"):
    if user_input:
        # Tokenize user input
        input_tokens = model.tokenizer(user_input,
            return_tensors="pt", 
            return_attention_mask=False, 
            truncation=True, 
            max_length=MAX_LENGTH, 
            padding=False)
        
        # Generate response
        generation_output = model.generate(
            input_tokens['input_ids'].cuda(), 
            max_new_tokens=20,
            use_cache=True,
            return_dict_in_generate=True)
        
        # Decode response
        response = model.tokenizer.decode(generation_output.sequences[0])
        st.text_area("Bot:", value=response, height=200, max_chars=None)
    else:
        st.warning("Please enter a message.")

# Footer
st.sidebar.markdown(
    """
    ### About
    This is a conversational chatbot built using the internlm2_5-7b-chat model and AirLLM.
    """
)