turhancan97 commited on
Commit
ac5c2a4
·
1 Parent(s): cbb2900

add multiple image plot

Browse files
Files changed (1) hide show
  1. app.py +19 -16
app.py CHANGED
@@ -28,7 +28,6 @@ transform = v2.Compose([
28
  # Load and Preprocess the Image
29
  def load_image(image_path, transform):
30
  img = Image.open(image_path).convert('RGB')
31
- # transform = Compose([ToTensor(), Normalize(0.5, 0.5), Resize((32, 32))])
32
  img = transform(img).unsqueeze(0) # Add batch dimension
33
  return img
34
 
@@ -36,6 +35,10 @@ def show_image(img, title):
36
  img = rearrange(img, "c h w -> h w c")
37
  img = (img.cpu().detach().numpy() + 1) / 2 # Normalize to [0, 1]
38
 
 
 
 
 
39
  # Visualize a Single Image
40
  def visualize_single_image(image_path):
41
  img = load_image(image_path, transform).to(device)
@@ -51,28 +54,28 @@ def visualize_single_image(image_path):
51
 
52
  # MAE reconstruction pasted with visible patches
53
  im_paste = img * (1 - mask) + predicted_img * mask
54
-
55
- img = rearrange(img[0], "c h w -> h w c")
56
- img = (img.cpu().detach().numpy() + 1) / 2 # Normalize to [0, 1]
57
 
58
- # # make the plt figure larger
59
- # plt.figure(figsize=(12, 4))
 
 
 
60
 
61
- # plt.subplot(1, 4, 1)
62
- # show_image(img[0], "original")
63
 
64
- # plt.subplot(1, 4, 2)
65
- # show_image(im_masked[0], "masked")
66
 
67
- # plt.subplot(1, 4, 3)
68
- # show_image(predicted_img[0], "reconstruction")
69
 
70
- # plt.subplot(1, 4, 4)
71
- # show_image(im_paste[0], "reconstruction + visible")
72
 
73
- # plt.tight_layout()
 
74
 
75
- return img # , im_masked[0].numpy(), predicted_img[0].numpy(), im_paste[0].numpy()
76
 
77
  inputs_image = [
78
  gr.components.Image(type="filepath", label="Input Image"),
 
28
  # Load and Preprocess the Image
29
  def load_image(image_path, transform):
30
  img = Image.open(image_path).convert('RGB')
 
31
  img = transform(img).unsqueeze(0) # Add batch dimension
32
  return img
33
 
 
35
  img = rearrange(img, "c h w -> h w c")
36
  img = (img.cpu().detach().numpy() + 1) / 2 # Normalize to [0, 1]
37
 
38
+ plt.imshow(img)
39
+ plt.axis('off')
40
+ plt.title(title)
41
+
42
  # Visualize a Single Image
43
  def visualize_single_image(image_path):
44
  img = load_image(image_path, transform).to(device)
 
54
 
55
  # MAE reconstruction pasted with visible patches
56
  im_paste = img * (1 - mask) + predicted_img * mask
 
 
 
57
 
58
+ # make the plt figure larger
59
+ plt.figure(figsize=(12, 4))
60
+
61
+ plt.subplot(1, 4, 1)
62
+ show_image(img[0], "original")
63
 
64
+ plt.subplot(1, 4, 2)
65
+ show_image(im_masked[0], "masked")
66
 
67
+ plt.subplot(1, 4, 3)
68
+ show_image(predicted_img[0], "reconstruction")
69
 
70
+ plt.subplot(1, 4, 4)
71
+ show_image(im_paste[0], "reconstruction + visible")
72
 
73
+ plt.tight_layout()
 
74
 
75
+ # convert the plt figure to a numpy array
76
+ plt.savefig("output.png")
77
 
78
+ return np.array(plt.imread("output.png"))
79
 
80
  inputs_image = [
81
  gr.components.Image(type="filepath", label="Input Image"),