Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
import soundfile as sf
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
# Load the ASR model from Hugging Face
|
7 |
+
@st.cache_resource
|
8 |
+
def load_model():
|
9 |
+
# Use Hugging Face's pipeline with your desired model
|
10 |
+
return pipeline("automatic-speech-recognition", model="fractalego/personal-speech-to-text-model")
|
11 |
+
|
12 |
+
# Initialize the model pipeline
|
13 |
+
pipe = load_model()
|
14 |
+
|
15 |
+
# Streamlit UI
|
16 |
+
st.title("Speech-to-Text Transcription App")
|
17 |
+
st.write("Upload an audio file, and the AI model will transcribe it.")
|
18 |
+
|
19 |
+
# Upload audio file
|
20 |
+
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "m4a"])
|
21 |
+
|
22 |
+
if uploaded_file is not None:
|
23 |
+
st.audio(uploaded_file, format='audio/wav')
|
24 |
+
|
25 |
+
# Save uploaded file to a temporary location
|
26 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
27 |
+
temp_file.write(uploaded_file.read())
|
28 |
+
temp_file_path = temp_file.name
|
29 |
+
|
30 |
+
# Read the audio file and transcribe
|
31 |
+
with st.spinner("Transcribing... Please wait..."):
|
32 |
+
transcription = pipe(temp_file_path)
|
33 |
+
|
34 |
+
# Display the transcription result
|
35 |
+
st.subheader("Transcription")
|
36 |
+
st.write(transcription['text'])
|
37 |
+
|
38 |
+
else:
|
39 |
+
st.info("Please upload an audio file to start transcription.")
|