Spaces:
Sleeping
Sleeping
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
|
|
6 |
|
7 |
# Streamlit app
|
8 |
st.title("Romanian to English Translator")
|
@@ -13,8 +15,11 @@ input_text = st.text_area("Enter text in Romanian:")
|
|
13 |
# Translate button
|
14 |
if st.button("Translate"):
|
15 |
if input_text:
|
|
|
|
|
16 |
# Perform translation
|
17 |
-
|
|
|
18 |
st.write("Translation:")
|
19 |
st.write(translation)
|
20 |
else:
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import MarianMTModel, MarianTokenizer
|
3 |
|
4 |
+
# Load the model and tokenizer
|
5 |
+
model_name = "Helsinki-NLP/opus-mt-ro-en"
|
6 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
7 |
+
model = MarianMTModel.from_pretrained(model_name)
|
8 |
|
9 |
# Streamlit app
|
10 |
st.title("Romanian to English Translator")
|
|
|
15 |
# Translate button
|
16 |
if st.button("Translate"):
|
17 |
if input_text:
|
18 |
+
# Tokenize the input text
|
19 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
|
20 |
# Perform translation
|
21 |
+
translated_tokens = model.generate(**inputs)
|
22 |
+
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
23 |
st.write("Translation:")
|
24 |
st.write(translation)
|
25 |
else:
|