from huggingface_hub import InferenceClient import random from flask import Flask, request, jsonify, redirect, url_for from flask_cors import CORS client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1") app = Flask(__name__) CORS(app) @app.route('/') def home(): return jsonify({"message": "Welcome to the Recommendation API!"}) def format_prompt(message): # Generate a random user prompt and bot response pair user_prompt = "UserPrompt" bot_response = "BotResponse" return f"[INST] {user_prompt} [/INST] {bot_response} [INST] {message} [/INST]" @app.route('/ai_mentor', methods=['POST']) def ai_mentor(): data = request.get_json() message = data.get('message') if not message: return jsonify({"message": "Missing message"}), 400 temperature = 0.9 max_new_tokens = 256 top_p = 0.95 repetition_penalty = 1.0 generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) # Define prompt for the conversation prompt = f""" prompt: Act as an mentor User: {message}""" formatted_prompt = format_prompt(prompt) try: # Generate response from the Language Model response = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False) return jsonify({"response": response}), 200 except Exception as e: return jsonify({"message": f"Failed to process request: {str(e)}"}), 500 @app.route('/get_course', methods=['POST']) def get_course(): temperature = 0.9 max_new_tokens = 256 top_p = 0.95 repetition_penalty = 1.0 content = request.json user_degree = content.get('degree') user_stream = content.get('stream') #user_semester = content.get('semester') generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) prompt = f""" prompt: You need to act like as recommendation engine for course recommendation for a student based on below details. Degree: {user_degree} Stream: {user_stream} Based on above details recommend the courses that relate to the above details Note: Output should be list in below format: [course1, course2, course3,...] Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks """ formatted_prompt = format_prompt(prompt) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False) return jsonify({"ans": stream}) @app.route('/get_mentor', methods=['POST']) def get_mentor(): temperature = 0.9 max_new_tokens = 256 top_p = 0.95 repetition_penalty = 1.0 content = request.json user_degree = content.get('degree') user_stream = content.get('stream') #user_semester = content.get('semester') courses = content.get('courses') mentors_data= content.get('mentors_data') temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) prompt = f""" prompt: You need to act like as recommendataion engine for mentor recommendation for student based on below details also the list of mentors with their experience is attached. Degree: {user_degree} Stream: {user_stream} courses opted:{courses} Mentor list= {mentors_data} Based on above details recommend the mentor that realtes to above details Note: Output should be list in below format: [mentor1,mentor2,mentor3,...] Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks """ formatted_prompt = format_prompt(prompt) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False) return jsonify({"ans": stream}) if __name__ == '__main__': app.run(debug=True)