Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient | |
import random | |
from flask import Flask, request, jsonify, make_response | |
from flask_jwt_extended import JWTManager, create_access_token, jwt_required, get_jwt_identity | |
from werkzeug.security import generate_password_hash, check_password_hash | |
import sqlite3 | |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1") | |
app = Flask(__name__) | |
file_path = "mentor.txt" | |
with open(file_path, "r") as file: | |
mentors_data = file.read() | |
def home(): | |
return jsonify({"message": "Welcome to the Recommendation API!"}) | |
app.config['JWT_SECRET_KEY'] = 123456 | |
jwt = JWTManager(app) | |
# Create SQLite database | |
conn = sqlite3.connect('users.db', check_same_thread=False) | |
c = conn.cursor() | |
c.execute('''CREATE TABLE IF NOT EXISTS users | |
(id INTEGER PRIMARY KEY AUTOINCREMENT, username TEXT UNIQUE, password TEXT)''') | |
c.execute('''CREATE TABLE IF NOT EXISTS user_details | |
(id INTEGER PRIMARY KEY AUTOINCREMENT, user_id INTEGER UNIQUE, full_name TEXT, email TEXT, | |
FOREIGN KEY(user_id) REFERENCES users(id))''') | |
conn.commit() | |
# Endpoint for user registration | |
def register(): | |
data = request.get_json() | |
username = data.get('username') | |
password = data.get('password') | |
if not username or not password: | |
return jsonify({"message": "Missing username or password"}), 400 | |
hashed_password = generate_password_hash(password) | |
try: | |
c.execute("INSERT INTO users (username, password) VALUES (?, ?)", (username, hashed_password)) | |
conn.commit() | |
return jsonify({"message": "User created successfully"}), 201 | |
except sqlite3.IntegrityError: | |
return jsonify({"message": "Username already exists"}), 400 | |
# Endpoint for user login | |
def login(): | |
data = request.get_json() | |
username = data.get('username') | |
password = data.get('password') | |
if not username or not password: | |
return jsonify({"message": "Missing username or password"}), 400 | |
user = c.execute("SELECT * FROM users WHERE username=?", (username,)).fetchone() | |
if user and check_password_hash(user[2], password): | |
access_token = create_access_token(identity=username, expires_delta=False) | |
return jsonify({"access_token": access_token}), 200 | |
else: | |
return jsonify({"message": "Invalid username or password"}), 401 | |
# Endpoint for storing additional user details | |
def add_user_details(): | |
current_user = get_jwt_identity() | |
data = request.get_json() | |
first_name = data.get('first_name') | |
last_name = data.get('last_name') | |
school_name = data.get('school_name') | |
bachelors_degree = data.get('bachelors_degree') | |
masters_degree = data.get('masters_degree') | |
certification = data.get('certification') | |
activity = data.get('activity') | |
country = data.get('country') | |
if not all([first_name, last_name, school_name, bachelors_degree, masters_degree, certification, activity, country]): | |
return jsonify({"message": "Missing required fields"}), 400 | |
user = c.execute("SELECT * FROM users WHERE username=?", (current_user,)).fetchone() | |
if not user: | |
return jsonify({"message": "User not found"}), 404 | |
user_id = user[0] | |
try: | |
c.execute("INSERT INTO user_details (user_id, first_name, last_name, school_name, bachelors_degree, " | |
"masters_degree, certification, activity, country) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)", | |
(user_id, first_name, last_name, school_name, bachelors_degree, masters_degree, certification, | |
activity, country)) | |
conn.commit() | |
return jsonify({"message": "User details added successfully"}), 201 | |
except sqlite3.IntegrityError: | |
return jsonify({"message": "User details already exist"}), 400 | |
def format_prompt(message): | |
# Generate a random user prompt and bot response pair | |
user_prompt = "UserPrompt" | |
bot_response = "BotResponse" | |
return f"<s>[INST] {user_prompt} [/INST] {bot_response}</s> [INST] {message} [/INST]" | |
def recommend(): | |
current_user = get_jwt_identity() | |
temperature = 0.9 | |
max_new_tokens = 256 | |
top_p = 0.95 | |
repetition_penalty = 1.0 | |
content = request.json | |
user_degree = content.get('degree') | |
user_stream = content.get('stream') | |
user_semester = content.get('semester') | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
prompt = f""" prompt: | |
You need to act like as recommendation engine for course recommendation for a student based on below details. | |
Degree: {user_degree} | |
Stream: {user_stream} | |
Current Semester: {user_semester} | |
Based on above details recommend the courses that relate to the above details | |
Note: Output should be list in below format: | |
[course1, course2, course3,...] | |
Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks | |
""" | |
formatted_prompt = format_prompt(prompt) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False) | |
return jsonify({"ans": stream}) | |
def mentor(): | |
current_user = get_jwt_identity() | |
temperature = 0.9 | |
max_new_tokens = 256 | |
top_p = 0.95 | |
repetition_penalty = 1.0 | |
content = request.json | |
user_degree = content.get('degree') | |
user_stream = content.get('stream') | |
user_semester = content.get('semester') | |
courses = content.get('courses') | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
prompt = f""" prompt: | |
You need to act like as recommendataion engine for mentor recommendation for student based on below details also the list of mentors with their experience is attached. | |
Degree: {user_degree} | |
Stream: {user_stream} | |
Current Semester: {user_semester} | |
courses opted:{courses} | |
Mentor list= {mentors_data} | |
Based on above details recommend the mentor that realtes to above details | |
Note: Output should be list in below format: | |
[mentor1,mentor2,mentor3,...] | |
Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks | |
""" | |
formatted_prompt = format_prompt(prompt) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False) | |
return jsonify({"ans": stream}) | |
if __name__ == '__main__': | |
app.run(debug=True) | |