Spaces:
Sleeping
Sleeping
| from flask import Flask, request, jsonify | |
| from huggingface_hub import InferenceClient | |
| client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1") | |
| app = Flask(__name__) | |
| file_path = "mentor.txt" | |
| with open(file_path, "r") as file: | |
| mentors_data = file.read() | |
| def home(): | |
| return jsonify({"message": "Welcome to the Recommendation API!"}) | |
| def format_prompt(message): | |
| prompt = "<s>" | |
| prompt += f"[INST] {message} [/INST]" | |
| prompt += "</s>" | |
| return prompt | |
| def generate_output(stream): | |
| output = "" | |
| for response in stream: | |
| output += response.token.text | |
| yield output | |
| def recommend(): | |
| temperature = 0.9 | |
| max_new_tokens = 256 | |
| top_p = 0.95 | |
| repetition_penalty = 1.0 | |
| content = request.json | |
| user_degree = content.get('degree') | |
| user_stream = content.get('stream') | |
| user_semester = content.get('semester') | |
| generate_kwargs = dict( | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| do_sample=True, | |
| seed=42, | |
| ) | |
| prompt = f""" prompt: | |
| You need to act like as recommendation engine for course recommendation for a student based on below details. | |
| Degree: {user_degree} | |
| Stream: {user_stream} | |
| Current Semester: {user_semester} | |
| Based on above details recommend the courses that relate to the above details | |
| Note: Output should be valid json format in below format: | |
| {{"course1:course_name, course2:course_name, course3:course_name,...}} | |
| """ | |
| formatted_prompt = format_prompt(prompt) | |
| stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| return jsonify({"ans": list(generate_output(stream))}) | |
| def mentor(): | |
| temperature = 0.9 | |
| max_new_tokens = 256 | |
| top_p = 0.95 | |
| repetition_penalty = 1.0 | |
| content = request.json | |
| user_degree = content.get('degree') | |
| user_stream = content.get('stream') | |
| user_semester = content.get('semester') | |
| courses = content.get('courses') | |
| temperature = float(temperature) | |
| if temperature < 1e-2: | |
| temperature = 1e-2 | |
| top_p = float(top_p) | |
| generate_kwargs = dict( | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| do_sample=True, | |
| seed=42, | |
| ) | |
| prompt = f""" prompt: | |
| You need to act like as recommendataion engine for mentor recommendation for student based on below details also the list of mentors with their experience is attached. | |
| Degree: {user_degree} | |
| Stream: {user_stream} | |
| Current Semester: {user_semester} | |
| courses opted:{courses} | |
| Mentor list= {mentors_data} | |
| Based on above details recommend the mentor that realtes to above details | |
| Note: Output should be valid json format in below format: | |
| {{"mentor1:mentor_name,mentor2:mentor_name,mentor3:mentor_name,...}} | |
| """ | |
| formatted_prompt = format_prompt(prompt) | |
| stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| return jsonify({"ans": list(generate_output(stream))}) | |
| if __name__ == '__main__': | |
| app.run(debug=True) | |