Spaces:
Sleeping
Sleeping
File size: 9,887 Bytes
423a42f 822dfd5 dd5f028 99d7e90 6257584 adb775b e702ced dd5f028 d6b9f91 509ca73 adb775b e702ced 272850f adb775b 6d8186b 6257584 ec2738b 7497699 a31113d a2be7db 10f9ea6 333978a 0204bd8 646c385 5aecc17 10f9ea6 1af9f6b 64fe3e4 5aecc17 e60d9fc 10f9ea6 09a4a4b 0a134b5 09a4a4b e60d9fc 09a4a4b 56bb78e 09a4a4b 56bb78e 5abdf22 09a4a4b 10f9ea6 e60d9fc ccb7aa0 370c257 24c6700 dd5f028 238c426 5aecc17 1af9f6b 24c6700 adb775b 1af9f6b 423a42f e947bcb c34d039 84ceaf6 387a3f9 84ceaf6 387a3f9 1df83c8 84ceaf6 24c6700 10f9ea6 423a42f ccb7aa0 370c257 24c6700 0a134b5 c26acbb 64db906 c26acbb 64db906 49cdfee 64db906 c26acbb c672f84 c26acbb fdce613 3e52308 f7f2c28 c26acbb 509ca73 1af9f6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
from huggingface_hub import InferenceClient
import random
from flask import Flask, request, jsonify, redirect, url_for
from flask_cors import CORS
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine, Column, Integer, String, Boolean, ForeignKey
from sqlalchemy.ext.declarative import declarative_base
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
connection_string = "postgresql://data_owner:PFAnX9oJp4wV@ep-green-heart-a78sxj65.ap-southeast-2.aws.neon.tech/figurecircle?sslmode=require"
Base = declarative_base()
class Mentor(Base):
__tablename__ = 'mentors'
id = Column(Integer, primary_key=True)
mentor_name = Column(String)
skills = Column(String)
qualification = Column(String)
experience = Column(String)
verified = Column(Boolean, default=False)
engine = create_engine(connection_string)
Session = sessionmaker(bind=engine)
app = Flask(__name__)
CORS(app)
@app.route('/')
def home():
return jsonify({"message": "Welcome to the Recommendation API!"})
def format_prompt(message):
# Generate a random user prompt and bot response pair
user_prompt = "UserPrompt"
bot_response = "BotResponse"
return f"<s>[INST] {user_prompt} [/INST] {bot_response}</s> [INST] {message} [/INST]"
@app.route('/ai_mentor', methods=['POST'])
def ai_mentor():
data = request.get_json()
message = data.get('message')
if not message:
return jsonify({"message": "Missing message"}), 400
temperature = 0.9
max_new_tokens = 256
top_p = 0.95
repetition_penalty = 1.0
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
# Define prompt for the conversation
prompt = f""" prompt:
Act as an mentor
User: {message}"""
formatted_prompt = format_prompt(prompt)
try:
# Generate response from the Language Model
response = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
return jsonify({"response": response}), 200
except Exception as e:
return jsonify({"message": f"Failed to process request: {str(e)}"}), 500
@app.route('/get_course', methods=['POST'])
def get_course():
temperature = 0.9
max_new_tokens = 256
top_p = 0.95
repetition_penalty = 1.0
content = request.json
# user_degree = content.get('degree') # Uncomment this line
user_stream = content.get('stream')
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
prompt = f""" prompt:
You need to act like as recommendation engine for course recommendation for a student. Below are current details.
Stream: {user_stream}
Based on current details recommend the courses for higher degree.
Note: Output should be list in below format:
[course1, course2, course3,...]
Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks
"""
formatted_prompt = format_prompt(prompt)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
return jsonify({"ans": stream})
@app.route('/get_mentor', methods=['POST'])
def get_mentor():
temperature = 0.9
max_new_tokens = 256
top_p = 0.95
repetition_penalty = 1.0
content = request.json
user_stream = content.get('stream')
session = Session()
# Query verified mentors
verified_mentors = session.query(Mentor).filter_by(verified=True).all()
mentor_list = [{"id": mentor.id, "mentor_name": mentor.mentor_name, "skills": mentor.skills,
"qualification": mentor.qualification, "experience": mentor.experience,
"verified": mentor.verified} for mentor in verified_mentors]
session.close()
mentors_data= mentor_list
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
prompt = f""" prompt:
You need to act as a recommendation engine for mentor recommendations based on the student's stream and a list of available mentors.
Stream: {user_stream}
Mentor list: {mentors_data}
Based on the provided details, recommend the mentors that relate to the student's stream. Dont choose mentor outside mentors list
Note: The output should be a valid list in the following format, containing only the mentor's ID and name from attached mentor list. Dont give unnecessary explanations or additional details:
[ mentor1_name, mentor2_name, mentor3_name, ...]
"""
formatted_prompt = format_prompt(prompt)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
return jsonify({"ans": stream})
@app.route('/get_streams', methods=['GET'])
def get_streams():
temperature = 0.9
max_new_tokens = 256
top_p = 0.95
repetition_penalty = 1.0
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
prompt = f""" prompt:
You need to act like as recommendation engine.
List all 40+ streams/branches in like computer science, chemical engineering, aerospace , etc
Note: Output should be list in below format:
[branch1, branch2, branch3,...]
Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks
"""
formatted_prompt = format_prompt(prompt)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
return jsonify({"ans": stream})
@app.route('/get_education_profiles', methods=['GET'])
def get_education_profiles():
temperature = 0.9
max_new_tokens = 256
top_p = 0.95
repetition_penalty = 1.0
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
sectors = ["engineering", "medical", "arts", "commerce", "science", "management"] # Example sectors
prompt = f"""prompt:
You need to act like a recommendation engine.
List all education-related profiles in sectors like {', '.join(sectors)}.
Note: Output should be a list in the below format:
[profile1, profile2, profile3,...]
Return only the answer, not the prompt or unnecessary stuff, and don't add any special characters or punctuation marks.
"""
formatted_prompt = format_prompt(prompt)
education_profiles = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
return jsonify({"ans": education_profiles})
@app.route('/get_certificate', methods=['POST'])
def get_certificate():
temperature = 0.9
max_new_tokens = 256
top_p = 0.95
repetition_penalty = 1.0
content = request.json
# user_degree = content.get('degree') # Uncomment this line
user_stream = content.get('stream')
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
prompt = f""" prompt:
You need to act like as recommendation engine for certification recommendation for a student. Below are current details.
Stream: {user_stream}
Based on current details recommend the certification
Note: Output should be list in below format:
[course1, course2, course3,...]
Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks
"""
formatted_prompt = format_prompt(prompt)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
return jsonify({"ans": stream})
@app.route('/get_competition', methods=['POST'])
def get_competition():
temperature = 0.9
max_new_tokens = 256
top_p = 0.95
repetition_penalty = 1.0
content = request.json
# user_degree = content.get('degree') # Uncomment this line
user_stream = content.get('stream')
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
prompt = f""" prompt:
You need to act like as recommendation engine for competition recommendation for a student. Below are current details.
Stream: {user_stream}
Based on current details recommend the competition
Note: Output should be list in below format:
[course1, course2, course3,...]
Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks
"""
formatted_prompt = format_prompt(prompt)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
return jsonify({"ans": stream})
if __name__ == '__main__':
app.run(debug=True)
|