Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
from gradio_imageslider import ImageSlider
|
4 |
from loadimg import load_img
|
5 |
import spaces
|
6 |
from transformers import AutoModelForImageSegmentation
|
7 |
import torch
|
8 |
from torchvision import transforms
|
9 |
-
import uuid #
|
10 |
|
11 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
12 |
|
@@ -25,7 +24,7 @@ transform_image = transforms.Compose(
|
|
25 |
def create_session_folder():
|
26 |
"""Tạo thư mục duy nhất dựa trên UUID cho mỗi phiên làm việc."""
|
27 |
session_id = str(uuid.uuid4()) # Tạo UUID duy nhất
|
28 |
-
session_folder = os.path.join(
|
29 |
os.makedirs(session_folder, exist_ok=True)
|
30 |
return session_folder, session_id
|
31 |
|
@@ -39,15 +38,27 @@ def process(image):
|
|
39 |
pred = preds[0].squeeze()
|
40 |
pred_pil = transforms.ToPILImage()(pred)
|
41 |
mask = pred_pil.resize(image_size)
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
def fn(image):
|
45 |
session_folder, session_id = create_session_folder()
|
46 |
im = load_img(image, output_type="pil")
|
47 |
im = im.convert("RGB")
|
48 |
mask = process(im)
|
49 |
-
image_path = os.path.join(session_folder, "
|
50 |
-
mask.save(image_path)
|
51 |
return image_path
|
52 |
|
53 |
image = gr.Image(label="Upload an image")
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
|
|
3 |
from loadimg import load_img
|
4 |
import spaces
|
5 |
from transformers import AutoModelForImageSegmentation
|
6 |
import torch
|
7 |
from torchvision import transforms
|
8 |
+
import uuid # Thư viện uuid để tạo UUID
|
9 |
|
10 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
11 |
|
|
|
24 |
def create_session_folder():
|
25 |
"""Tạo thư mục duy nhất dựa trên UUID cho mỗi phiên làm việc."""
|
26 |
session_id = str(uuid.uuid4()) # Tạo UUID duy nhất
|
27 |
+
session_folder = os.path.join("output_images", session_id)
|
28 |
os.makedirs(session_folder, exist_ok=True)
|
29 |
return session_folder, session_id
|
30 |
|
|
|
38 |
pred = preds[0].squeeze()
|
39 |
pred_pil = transforms.ToPILImage()(pred)
|
40 |
mask = pred_pil.resize(image_size)
|
41 |
+
|
42 |
+
# Tạo ảnh PNG trong suốt
|
43 |
+
transparent_mask = mask.convert("L") # Chuyển thành ảnh grayscale
|
44 |
+
result = mask.convert("RGBA")
|
45 |
+
pixels = result.load()
|
46 |
+
|
47 |
+
for i in range(result.width):
|
48 |
+
for j in range(result.height):
|
49 |
+
# Đặt màu đen với độ trong suốt
|
50 |
+
alpha = transparent_mask.getpixel((i, j))
|
51 |
+
pixels[i, j] = (0, 0, 0, alpha)
|
52 |
+
|
53 |
+
return result
|
54 |
|
55 |
def fn(image):
|
56 |
session_folder, session_id = create_session_folder()
|
57 |
im = load_img(image, output_type="pil")
|
58 |
im = im.convert("RGB")
|
59 |
mask = process(im)
|
60 |
+
image_path = os.path.join(session_folder, "transparent_mask.png")
|
61 |
+
mask.save(image_path, "PNG")
|
62 |
return image_path
|
63 |
|
64 |
image = gr.Image(label="Upload an image")
|