File size: 14,813 Bytes
590af54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import hydra
import pyrootutils
import torch
import re
import time
from omegaconf import OmegaConf
from flask import Flask, request
from typing import Optional
import transformers
from dataclasses import dataclass, field
import io
import base64
from PIL import Image
import numpy as np
import cv2
from diffusers import AutoencoderKL, UNet2DConditionModel, EulerDiscreteScheduler


pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)

from src.data.any_res import process_anyres_image

BOI_TOKEN = '<img>'
BOP_TOKEN = '<patch>'
EOI_TOKEN = '</img>'
EOP_TOKEN = '</patch>'
IMG_TOKEN = '<img_{:05d}>'

IMG_FLAG = '<image>'
num_img_in_tokens = 64
num_img_out_tokens = 64

resolution_grids = ['1x1', '1x2', '1x3', '1x4', '1x5', '1x6', '1x10', '2x1', '3x1', '4x1', '5x1', '6x1', '10x1', '2x2', '2x3', '3x2', '2x4', '4x2']
base_resolution = 448

app = Flask(__name__)


def decode_image(encoded_image: str) -> Image:
    decoded_bytes = base64.b64decode(encoded_image.encode('utf-8'))
    buffer = io.BytesIO(decoded_bytes)
    image = Image.open(buffer)
    return image


def encode_image(image: Image.Image, format: str = 'PNG') -> str:
    with io.BytesIO() as buffer:
        image.save(buffer, format=format)
        encoded_image = base64.b64encode(buffer.getvalue()).decode('utf-8')
        return encoded_image


@dataclass
class Arguments:
    image_transform: Optional[str] = field(default=None, metadata={"help": "config path of image transform"})
    tokenizer: Optional[str] = field(default=None, metadata={"help": "config path of tokenizer used to initialize tokenizer"})
    llm: Optional[str] = field(default=None, metadata={"help": "config path of llm"})
    visual_encoder: Optional[str] = field(default=None, metadata={"help": "config path of visual encoder"})
    sd_adapter: Optional[str] = field(default=None, metadata={"help": "config path of sd adapter"})
    agent: Optional[str] = field(default=None, metadata={"help": "config path of agent model"})
    diffusion_path: Optional[str] = field(default=None, metadata={"help": "diffusion model path"})
    has_bbox: Optional[bool] = field(default=False, metadata={"help": "visualize the box"})

    port: Optional[str] = field(default=80, metadata={"help": "network port"})
    llm_device: Optional[str] = field(default='cuda:0', metadata={"help": "llm device"})
    vit_sd_device: Optional[str] = field(default='cuda:0', metadata={"help": "sd and vit device"})
    dtype: Optional[str] = field(default='fp16', metadata={"help": "mix percision"})

    multi_resolution: Optional[bool] = field(default=False, metadata={"help": "multi resolution"})


parser = transformers.HfArgumentParser(Arguments)
args, = parser.parse_args_into_dataclasses()

def extract_box(output_str):
    boxes = re.findall('(.*?)<box_end>', output_str)
    if len(boxes) >0:
        bboxes = [[int(num) for num in re.findall('<loc-(\d+)>', box)] for box in boxes]
    else:
        bboxes = None
    
    return bboxes


def visualize_bbox(image, bboxes):
    img_width, img_height = image.size
    image = np.array(image)
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    for bbox in bboxes:
        x_center, y_center, box_width, box_height = bbox
        
        x_center = x_center / 224 * img_width
        y_center = y_center  / 224 * img_height
        
        box_width = box_width /224 * img_width
        box_height = box_height / 224 * img_height
        
        x1 = int(x_center - box_width / 2)
        y1 = int(y_center - box_height / 2)
        x2 = int(x_center + box_width / 2)
        y2 = int(y_center + box_height / 2)
        
        cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 4)
    
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = Image.fromarray(image)
    
    
    return image

        
    

class LLMService:

    def __init__(self, args) -> None:

        self.llm_device = args.llm_device
        self.vit_sd_device = args.vit_sd_device

        dtype = args.dtype
        if dtype == 'fp16':
            self.dtype = torch.float16
        elif dtype == 'bf16':
            self.dtype = torch.bfloat16
        else:
            raise ValueError

        image_transform_cfg = OmegaConf.load(args.image_transform)
        self.image_transform = hydra.utils.instantiate(image_transform_cfg)

        tokenizer_cfg = OmegaConf.load(args.tokenizer)
        self.tokenizer = hydra.utils.instantiate(tokenizer_cfg)

        visual_encoder_cfg = OmegaConf.load(args.visual_encoder)
        self.visual_encoder = hydra.utils.instantiate(visual_encoder_cfg)
        self.visual_encoder.eval().to(self.vit_sd_device, dtype=self.dtype)
        print('Init visual encoder done')

        llm_cfg = OmegaConf.load(args.llm)
        llm = hydra.utils.instantiate(llm_cfg, torch_dtype=self.dtype)
        print('Init llm done.')

        agent_cfg = OmegaConf.load(args.agent)
        self.agent = hydra.utils.instantiate(agent_cfg, llm=llm)

        self.agent.eval().to(self.llm_device, dtype=self.dtype)
        print('Init agent mdoel Done')

        noise_scheduler = EulerDiscreteScheduler.from_pretrained(args.diffusion_path, subfolder="scheduler")

        vae = AutoencoderKL.from_pretrained(args.diffusion_path, subfolder="vae").to(self.vit_sd_device, dtype=self.dtype)

        unet = UNet2DConditionModel.from_pretrained(args.diffusion_path, subfolder="unet").to(dtype=self.dtype)

        sd_adapter_cfg = OmegaConf.load(args.sd_adapter)

        self.sd_adapter = hydra.utils.instantiate(sd_adapter_cfg, unet=unet).eval().to(dtype=self.dtype)

        self.sd_adapter.init_pipe(vae=vae,
                                  scheduler=noise_scheduler,
                                  visual_encoder=self.visual_encoder.to("cpu"),
                                  image_transform=self.image_transform,
                                  discrete_model=None,
                                  dtype=self.dtype,
                                  device="cpu")

        print('Init sd adapter pipe done.')

        self.visual_encoder.to(self.vit_sd_device, dtype=self.dtype)

        self.boi_token_id = self.tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
        self.eoi_token_id = self.tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]

        self.bop_token_id = self.tokenizer.encode(BOP_TOKEN, add_special_tokens=False)[0]
        self.eop_token_id = self.tokenizer.encode(EOP_TOKEN, add_special_tokens=False)[0]

        self.multi_resolution = args.multi_resolution
        if self.multi_resolution:
            self.base_resolution = base_resolution
            grid_pinpoints = []
            for scale in resolution_grids:
                s1, s2 = scale.split('x')
                grid_pinpoints.append([int(s1)*base_resolution, int(s2)*base_resolution])
            self.grid_pinpoints = grid_pinpoints


service = LLMService(args)


@app.route('/generate', methods=['GET', 'POST'])
def generate():
  with torch.no_grad():
    request_info = request.get_json()

    text_list = request_info['text'].split(IMG_FLAG)
    image_list = request_info['images']
    max_new_tokens = request_info.get('max_new_tokens', 256)
    top_p = 0.5
    force_boi = request_info.get('force_boi', False)
    force_bbox = request_info.get('force_bbox', False)

    assert len(text_list) == len(image_list) + 1

    image_tokens = BOI_TOKEN + ''.join([IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)]) + EOI_TOKEN

    input_images = []
    if len(image_list) > 0:
        image_tensor_list = []
        embeds_cmp_mask = []
        embeds_gen_mask = []

        if service.multi_resolution:
            patch_pos = []
            image_patch_length = []
            image_size_list = []

        for idx, image_item in enumerate(image_list):
            if isinstance(image_item, str):
                image = decode_image(image_item)
                print('after decode image size:', image.size)
                input_images.append(image)

                if service.multi_resolution:
                    image_size_list.append(image.size)
                    print('image size:', image.size)
                    image_tensor, patch_pos_tensor = process_anyres_image(image, service.image_transform, service.grid_pinpoints, service.base_resolution)
                    image_tensor_list.append(image_tensor)
                    patch_pos.append(patch_pos_tensor)
                    image_patch_length.append(image_tensor.shape[0])
                    print('image_patch_length', image_patch_length)
                    embeds_cmp_mask.extend([True]*image_tensor.shape[0])
                    embeds_gen_mask.extend([False]*image_tensor.shape[0])

                else:                    
                    image_tensor = service.image_transform(image)

                    image_tensor_list.append(image_tensor)
                    embeds_cmp_mask.append(True)
                    embeds_gen_mask.append(False)
            else:
                raise ValueError

        if service.multi_resolution:
            pixel_values = torch.cat(image_tensor_list).to(service.vit_sd_device, dtype=service.dtype)
            patch_position = torch.cat(patch_pos, dim=0)
            
            image_tokens_list = []
            for patch_length in image_patch_length:
                image_tokens = ''
                for _ in range(patch_length-1):
                    image_tokens +=  BOP_TOKEN + ''.join(IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOP_TOKEN
                image_tokens += BOI_TOKEN + ''.join(IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOI_TOKEN
                image_tokens_list.append(image_tokens)
        else:
            pixel_values = torch.stack(image_tensor_list).to(service.vit_sd_device, dtype=service.dtype)
        
        image_embeds = service.visual_encoder(pixel_values)
        image_embeds = image_embeds.to(service.llm_device)

        embeds_cmp_mask = torch.tensor(embeds_cmp_mask, dtype=torch.bool).to(service.llm_device)
        embeds_gen_mask = torch.tensor(embeds_gen_mask, dtype=torch.bool).to(service.llm_device)

    else:
        image_embeds = None
        patch_position = 0
        embeds_cmp_mask = None
        embeds_gen_mask = None

    if service.multi_resolution:
        input_text = ''
        for i, c in enumerate(text_list[:-1]):
            input_text += c + image_tokens_list[i]
        input_text += text_list[-1]

    else:
        input_text = image_tokens.join(text_list)
    
    if force_boi:
        input_text = input_text + BOI_TOKEN

    if force_bbox:
        input_text = input_text + '[[ <box_start>'
    print('input_text:', input_text)
    input_ids = service.tokenizer.encode(input_text, add_special_tokens=False)
    input_ids = [service.tokenizer.bos_token_id] + input_ids

    input_ids = torch.tensor(input_ids).to(service.llm_device, dtype=torch.long)
    ids_cmp_mask = torch.zeros_like(input_ids, dtype=torch.bool).to(service.llm_device)
    ids_gen_mask = torch.zeros_like(input_ids, dtype=torch.bool).to(service.llm_device)

    if service.multi_resolution:
        boi_indices = torch.where(torch.logical_or(input_ids == service.boi_token_id, input_ids == service.bop_token_id))[0].tolist()
        eoi_indices = torch.where(torch.logical_or(input_ids == service.eoi_token_id, input_ids == service.eop_token_id))[0].tolist()
           
    else:
    
        boi_indices = torch.where(input_ids == service.boi_token_id)[0].tolist()
        eoi_indices = torch.where(input_ids == service.eoi_token_id)[0].tolist()

    for boi_idx, eoi_idx in zip(boi_indices, eoi_indices):
        ids_cmp_mask[boi_idx + 1:eoi_idx] = True

    input_ids = input_ids.unsqueeze(0)
    ids_cmp_mask = ids_cmp_mask.unsqueeze(0)
    ids_gen_mask = ids_gen_mask.unsqueeze(0)

    error_msg = []

    if service.multi_resolution:
        output = service.agent.generate(
            tokenizer=service.tokenizer,
            input_ids=input_ids,
            image_embeds=image_embeds,
            patch_positions=patch_position,
            embeds_cmp_mask=embeds_cmp_mask,
            ids_cmp_mask=ids_cmp_mask,
            num_img_gen_tokens=num_img_out_tokens,
            max_new_tokens=max_new_tokens,
            dtype=service.dtype,
            device=service.llm_device,
            top_p=top_p,
        )
    else:
        output = service.agent.generate(
            tokenizer=service.tokenizer,
            input_ids=input_ids,
            image_embeds=image_embeds,
            embeds_cmp_mask=embeds_cmp_mask,
            ids_cmp_mask=ids_cmp_mask,
            num_img_gen_tokens=num_img_out_tokens,
            max_new_tokens=max_new_tokens,
            dtype=service.dtype,
            device=service.llm_device,
            top_p=top_p,
        )

    gen_imgs_base64_list = []
    generated_text = output['text']
    generated_text = generated_text.replace(EOI_TOKEN, IMG_FLAG).replace(service.tokenizer.eos_token, '')

    if output['has_img_output']:
        print('loading visual encoder and llm to CPU, and sd to GPU')
        a = time.time()
        service.agent = service.agent.to("cpu")
        service.sd_adapter = service.sd_adapter.to(service.vit_sd_device, dtype=service.dtype)
        print("Loading finished: ", time.time() - a)

        img_gen_feat = output['img_gen_feat'].to(service.vit_sd_device, dtype=service.dtype)

        for img_idx in range(output['num_gen_imgs']):
            img_feat = img_gen_feat[img_idx:img_idx + 1]
            generated_image = service.sd_adapter.generate(image_embeds=img_feat, num_inference_steps=50)[0]
            image_base64 = encode_image(generated_image)
            gen_imgs_base64_list.append(image_base64)

        print('loading visual encoder and llm to GPU, and sd to CPU')
        a = time.time()
        service.sd_adapter = service.sd_adapter.to("cpu")
        service.visual_encoder = service.visual_encoder.to(service.vit_sd_device, dtype=service.dtype)
        service.agent = service.agent.to(service.vit_sd_device, dtype=service.dtype)
        print("Loading finished: ", time.time() - a)

    if args.has_bbox:
        bboxes = extract_box(generated_text)
        
        if bboxes is not None and len(input_images) > 0:
            image_viz = visualize_bbox(input_images[0], bboxes)
            image_base64 = encode_image(image_viz)
            gen_imgs_base64_list.append(image_base64)
            generated_text = re.sub(r'\[\[ <box_start>.*?<box_end>.*?\]\]', 'the green bounding box', generated_text)
            generated_text += IMG_FLAG
    print(input_text + generated_text)

    return {'text': generated_text, 'images': gen_imgs_base64_list, 'error_msg': error_msg}


if __name__ == '__main__':
    app.run(host='0.0.0.0', port=args.port)