root
upload
e676d24
raw
history blame
5.46 kB
from PIL import Image
import numpy as np
import base64
import io
from io import BytesIO
from PIL import Image, ImageFile
from pdf2image import convert_from_path
import tempfile
from multiprocessing import Pool
import os
from loguru import logger
import uuid
from typing import Any, List, Tuple, Type, Literal, Optional, Union, Dict
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
def pil_image_to_base64(image: Image) -> str:
"""
Convert a PIL Image object to its base64 representation.
Args:
image (Image): The PIL Image object to be converted.
Returns:
str: The base64 representation of the image.
"""
# Create a bytes buffer
buffer = io.BytesIO()
# Save the image to the buffer
image.save(buffer, format="PNG")
# Get the bytes from the buffer
img_bytes = buffer.getvalue()
# Convert the bytes to base64
img_base64 = base64.b64encode(img_bytes).decode("utf-8")
return img_base64
def scale_image(image: Image.Image, new_height: int = 1024) -> Image.Image:
"""
Scale an image to a new height while maintaining the aspect ratio.
"""
width, height = image.size
aspect_ratio = width / height
new_width = int(new_height * aspect_ratio)
scaled_image = image.resize((new_width, new_height))
return scaled_image
def unflatten_array(flat_list, vector_size=128):
return np.array(flat_list).reshape(-1, vector_size)
def get_image_embedding(image_list: list[Image], openai_client, model: str, flatten: bool = False) -> list:
"""
Get the embedding of an image.
Args:
image (Image): The image to be embedded.
Returns:
list[list[float]] if flatten,
else: list[list[list[float]]] with shape = (number of images (m), number of vector for each text (n), vector dim = 128)
"""
if not isinstance(image_list, list):
image_list = [image_list]
input_base64_list = [f"data:image/png;base64,{pil_image_to_base64(image)}" for image in image_list]
# Get the embedding of the image
embedding = openai_client.embeddings.create(
input=input_base64_list,
model=model,
extra_body={
"modality": "image",
"encoding_format":"float" if not flatten else "base64",
},
)
result = []
for embed in embedding.data:
result.append(embed.embedding) # embed.embedding is a list[float] in case of flatten, else: list[list[float]]
return result
def get_text_embedding(texts: list[str], openai_client, model: str, flatten: bool = False) -> list:
"""
Get the embedding of a text.
Args:
text (str): The text to be embedded.
Returns:
list[list[float]] if flatten,
else: list[list[list[float]]] with shape = (number of texts (m), number of vector for each text (n), vector dim = 128)
"""
if not isinstance(texts, list):
texts = [texts]
# Get the embedding of the text
embedding = openai_client.embeddings.create(
input=texts,
model=model,
extra_body={
"encoding_format":"float" if not flatten else "base64",
},
)
result = []
for embed in embedding.data:
result.append(embed.embedding) # embed.embedding is a list[float] in case of flatten, else: list[list[float]]
return result
def load_images(image_paths):
"""
Load images from a list of paths and return a list of PIL image objects.
Args:
image_paths (list): List of image paths.
Returns:
list: List of PIL image objects.
"""
images = []
for path in image_paths:
try:
img = Image.open(path)
images.append(img)
except Exception as e:
logger.error(f"Error loading image at path {path}: {str(e)}")
return images
def process_pdf(pdf_path: str, output_folder: str, thread_count=1):
result_image_paths = []
with tempfile.TemporaryDirectory() as temp_dir:
images = convert_from_path(pdf_path, dpi=200, output_folder=temp_dir, thread_count=thread_count)
# for page_num, image in enumerate(images):
# image_filename = f"{str(uuid.uuid4())}.png"
# image_path = os.path.join(output_folder, image_filename)
# image.save(image_path, "PNG")
# result_image_paths.append(image_path)
# del images
# return result_image_paths
return images
def pdf_folder_to_images(pdf_folder: str, output_folder: str, process_count: int = 2):
try:
if process_count is None:
process_count = os.cpu_count()
pdf_files = [os.path.join(pdf_folder, f) for f in os.listdir(pdf_folder)
if f.lower().endswith('.pdf')]
# Create a list of tuples containing (pdf_file, output_folder)
args = [(pdf_file, output_folder) for pdf_file in pdf_files]
with Pool(process_count) as pool:
all_images = pool.starmap(process_pdf, args)
result = [img for sublist in all_images for img in sublist]
logger.debug(f"Number of pdfs processed: {len(all_images)} - Number of images: {len(result)}")
return result
except Exception as e:
logger.exception(f"Error during processing pdf: {e}")