# This script is designed for Hugging Face Spaces # Dependencies are specified in requirements.txt in the Space's repository root # Expected dependencies: # gradio>=4.0.0 # opencv-python>=4.8.0 # requests>=2.28.0 # ultralytics>=8.2.0 # pytubefix>=6.0.0 # numpy>=1.23.0 import sys import gradio as gr import os import tempfile import cv2 import requests from ultralytics import YOLO # Remove extra CLI arguments that Spaces might pass sys.argv = [arg for arg in sys.argv if arg != "--import"] model = YOLO("yolo11n-pose.pt") def process_input(uploaded_file, youtube_link, image_url, sensitivity): input_path = None temp_files = [] # Input priority handling if youtube_link and youtube_link.strip(): try: from pytubefix import YouTube yt = YouTube(youtube_link) stream = yt.streams.filter(file_extension='mp4', progressive=True).order_by("resolution").desc().first() if not stream: return None, None, None, "No suitable mp4 stream found." temp_path = os.path.join(tempfile.gettempdir(), f"yt_{os.urandom(8).hex()}.mp4") stream.download(output_path=tempfile.gettempdir(), filename=os.path.basename(temp_path)) input_path = temp_path temp_files.append(input_path) except Exception as e: return None, None, None, f"Error downloading YouTube video: {str(e)}" elif image_url and image_url.strip(): try: response = requests.get(image_url, stream=True, timeout=10) response.raise_for_status() temp_path = os.path.join(tempfile.gettempdir(), f"img_{os.urandom(8).hex()}.jpg") with open(temp_path, "wb") as f: f.write(response.content) input_path = temp_path temp_files.append(input_path) except Exception as e: return None, None, None, f"Error downloading image: {str(e)}" elif uploaded_file is not None: input_path = uploaded_file.name else: return None, None, None, "Please provide an input." # Process file ext = os.path.splitext(input_path)[1].lower() video_exts = [".mp4", ".mov", ".avi", ".webm"] output_path = None try: if ext in video_exts: # Video processing cap = cv2.VideoCapture(input_path) if not cap.isOpened(): return None, None, None, f"Cannot open video file: {input_path}" fps = cap.get(cv2.CAP_PROP_FPS) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) if fps <= 0 or width <= 0 or height <= 0: return None, None, None, "Invalid video properties detected." output_path = os.path.join(tempfile.gettempdir(), f"out_{os.urandom(8).hex()}.mp4") # Use 'mp4v' instead of 'avc1' as it might work better with Spaces' OpenCV fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) if not out.isOpened(): # Fallback message if VideoWriter fails return None, None, None, "Video processing failed: No suitable encoder available in this environment. Try a different input format or contact support." processed_frames = 0 while True: ret, frame = cap.read() if not ret: break # Process frame frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = model.predict(source=frame_rgb, conf=sensitivity)[0] annotated_frame = results.plot() annotated_frame_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR) out.write(annotated_frame_bgr) processed_frames += 1 cap.release() out.release() temp_files.append(output_path) if processed_frames == 0: return None, None, None, "No frames processed from video." if not os.path.exists(output_path) or os.path.getsize(output_path) < 1024: return None, None, None, f"Output video created but too small ({os.path.getsize(output_path)} bytes) - processing failed. Codec support might be limited." return output_path, None, output_path, f"Video processed successfully! ({processed_frames}/{frame_count} frames)" else: # Image processing results = model.predict(source=input_path, conf=sensitivity)[0] annotated = results.plot() output_path = os.path.join(tempfile.gettempdir(), f"out_{os.urandom(8).hex()}.jpg") cv2.imwrite(output_path, annotated) temp_files.append(output_path) return output_path, output_path, None, "Image processed successfully!" except Exception as e: return None, None, None, f"Processing error: {str(e)}" finally: for f in temp_files[:-1]: if f and os.path.exists(f): try: os.remove(f) except: pass with gr.Blocks(css=""" .result_img > img { width: 100%; height: auto; object-fit: contain; } """) as demo: with gr.Row(): with gr.Column(scale=1): gr.HTML("