Spaces:
Running
Running
import sys | |
import gradio as gr | |
import os | |
import tempfile | |
import cv2 | |
import requests | |
from ultralytics import YOLO | |
# Remove extra CLI arguments (like "--import") from Spaces. | |
sys.argv = [arg for arg in sys.argv if arg != "--import"] | |
# Load the YOLO11-pose model (will auto-download if needed) | |
model = YOLO("yolo11n-pose.pt") | |
def process_input(uploaded_file, youtube_link, image_url): | |
""" | |
Process an uploaded file, a YouTube link, or an image URL for pose detection. | |
Returns a tuple: (download_file_path, display_file_path, status_message). | |
Priority: YouTube link > Image URL > Uploaded file. | |
""" | |
input_path = None | |
# Priority 1: YouTube link | |
if youtube_link and youtube_link.strip(): | |
try: | |
from pytube import YouTube | |
yt = YouTube(youtube_link) | |
stream = yt.streams.filter(file_extension='mp4', progressive=True)\ | |
.order_by("resolution").desc().first() | |
if stream is None: | |
return None, None, "No suitable mp4 stream found." | |
input_path = stream.download() | |
except Exception as e: | |
return None, None, f"Error downloading video: {e}" | |
# Priority 2: Image URL | |
elif image_url and image_url.strip(): | |
try: | |
response = requests.get(image_url, stream=True) | |
if response.status_code != 200: | |
return None, None, f"Error downloading image: HTTP {response.status_code}" | |
temp_image_path = os.path.join(tempfile.gettempdir(), "downloaded_image.jpg") | |
with open(temp_image_path, "wb") as f: | |
f.write(response.content) | |
input_path = temp_image_path | |
except Exception as e: | |
return None, None, f"Error downloading image: {e}" | |
# Priority 3: Uploaded file | |
elif uploaded_file is not None: | |
input_path = uploaded_file.name | |
else: | |
return None, None, "Please provide a YouTube link, image URL, or upload a file." | |
# Run pose detection (with save=True so annotated outputs are written to disk) | |
try: | |
results = model.predict(source=input_path, save=True) | |
except Exception as e: | |
return None, None, f"Error running prediction: {e}" | |
output_path = None | |
try: | |
# If the results object has a save_path attribute, use it. | |
if hasattr(results[0], "save_path"): | |
output_path = results[0].save_path | |
else: | |
# Otherwise, generate an annotated image using plot() and save it manually. | |
annotated = results[0].plot() # returns a numpy array | |
output_path = os.path.join(tempfile.gettempdir(), "annotated.jpg") | |
cv2.imwrite(output_path, annotated) | |
except Exception as e: | |
return None, None, f"Error processing the file: {e}" | |
# Clean up the temporary input file if downloaded. | |
if (youtube_link or (image_url and image_url.strip())) and input_path and os.path.exists(input_path): | |
os.remove(input_path) | |
# Return the same output path for both download and display. | |
return output_path, output_path, "Success!" | |
# Define the Gradio interface. | |
with gr.Blocks() as demo: | |
gr.Markdown("# Pose Detection with YOLO11-pose") | |
gr.Image(value="crowdresult.jpg", label="Crowd Result", interactive=False) | |
gr.Markdown("Upload an image/video, provide an image URL, or supply a YouTube link to detect human poses.") | |
with gr.Row(): | |
file_input = gr.File(label="Upload Image/Video") | |
with gr.Row(): | |
youtube_input = gr.Textbox(label="YouTube Link", placeholder="https://...") | |
image_url_input = gr.Textbox(label="Image URL", placeholder="https://...") | |
# Three outputs: one for file download, one for immediate display, and one for status text. | |
output_file = gr.File(label="Download Annotated Output") | |
output_display = gr.Image(label="Annotated Output") | |
output_text = gr.Textbox(label="Status", interactive=False) | |
run_button = gr.Button("Run Pose Detection") | |
run_button.click( | |
process_input, | |
inputs=[file_input, youtube_input, image_url_input], | |
outputs=[output_file, output_display, output_text] | |
) | |
# Only launch the interface if executed directly. | |
if __name__ == "__main__": | |
demo.launch() | |