tstone87's picture
Update app.py
bbc9616 verified
raw
history blame
4.3 kB
import sys
import gradio as gr
import os
import tempfile
import cv2
import requests
from ultralytics import YOLO
# Remove extra CLI arguments (like "--import") from Spaces.
sys.argv = [arg for arg in sys.argv if arg != "--import"]
# Load the YOLO11-pose model (will auto-download if needed)
model = YOLO("yolo11n-pose.pt")
def process_input(uploaded_file, youtube_link, image_url):
"""
Process an uploaded file, a YouTube link, or an image URL for pose detection.
Returns a tuple: (download_file_path, display_file_path, status_message).
Priority: YouTube link > Image URL > Uploaded file.
"""
input_path = None
# Priority 1: YouTube link
if youtube_link and youtube_link.strip():
try:
from pytube import YouTube
yt = YouTube(youtube_link)
stream = yt.streams.filter(file_extension='mp4', progressive=True)\
.order_by("resolution").desc().first()
if stream is None:
return None, None, "No suitable mp4 stream found."
input_path = stream.download()
except Exception as e:
return None, None, f"Error downloading video: {e}"
# Priority 2: Image URL
elif image_url and image_url.strip():
try:
response = requests.get(image_url, stream=True)
if response.status_code != 200:
return None, None, f"Error downloading image: HTTP {response.status_code}"
temp_image_path = os.path.join(tempfile.gettempdir(), "downloaded_image.jpg")
with open(temp_image_path, "wb") as f:
f.write(response.content)
input_path = temp_image_path
except Exception as e:
return None, None, f"Error downloading image: {e}"
# Priority 3: Uploaded file
elif uploaded_file is not None:
input_path = uploaded_file.name
else:
return None, None, "Please provide a YouTube link, image URL, or upload a file."
# Run pose detection (with save=True so annotated outputs are written to disk)
try:
results = model.predict(source=input_path, save=True)
except Exception as e:
return None, None, f"Error running prediction: {e}"
output_path = None
try:
# If the results object has a save_path attribute, use it.
if hasattr(results[0], "save_path"):
output_path = results[0].save_path
else:
# Otherwise, generate an annotated image using plot() and save it manually.
annotated = results[0].plot() # returns a numpy array
output_path = os.path.join(tempfile.gettempdir(), "annotated.jpg")
cv2.imwrite(output_path, annotated)
except Exception as e:
return None, None, f"Error processing the file: {e}"
# Clean up the temporary input file if downloaded.
if (youtube_link or (image_url and image_url.strip())) and input_path and os.path.exists(input_path):
os.remove(input_path)
# Return the same output path for both download and display.
return output_path, output_path, "Success!"
# Define the Gradio interface.
with gr.Blocks() as demo:
gr.Markdown("# Pose Detection with YOLO11-pose")
gr.Image(value="crowdresult.jpg", label="Crowd Result", interactive=False)
gr.Markdown("Upload an image/video, provide an image URL, or supply a YouTube link to detect human poses.")
with gr.Row():
file_input = gr.File(label="Upload Image/Video")
with gr.Row():
youtube_input = gr.Textbox(label="YouTube Link", placeholder="https://...")
image_url_input = gr.Textbox(label="Image URL", placeholder="https://...")
# Three outputs: one for file download, one for immediate display, and one for status text.
output_file = gr.File(label="Download Annotated Output")
output_display = gr.Image(label="Annotated Output")
output_text = gr.Textbox(label="Status", interactive=False)
run_button = gr.Button("Run Pose Detection")
run_button.click(
process_input,
inputs=[file_input, youtube_input, image_url_input],
outputs=[output_file, output_display, output_text]
)
# Only launch the interface if executed directly.
if __name__ == "__main__":
demo.launch()