Spaces:
Running
Running
import sys | |
import gradio as gr | |
import os | |
import tempfile | |
import cv2 | |
from ultralytics import YOLO | |
# Optionally remove extra CLI arguments that Spaces might pass | |
sys.argv = [arg for arg in sys.argv if arg != "--import"] | |
# Load the YOLO11-pose model (it will auto-download if not present) | |
model = YOLO("yolo11n-pose.pt") | |
def process_input(uploaded_file, youtube_link): | |
""" | |
Process an uploaded file or a YouTube link to perform pose detection. | |
Returns a tuple: (annotated_file_path, status_message). | |
If an error occurs, annotated_file_path is None and status_message describes the error. | |
""" | |
error_message = "" | |
input_path = None | |
# Check for input: either a YouTube link or an uploaded file. | |
if youtube_link and youtube_link.strip(): | |
try: | |
from pytube import YouTube | |
yt = YouTube(youtube_link) | |
# Get the highest resolution progressive mp4 stream | |
stream = yt.streams.filter(file_extension='mp4', progressive=True)\ | |
.order_by("resolution").desc().first() | |
if stream is None: | |
return None, "No suitable mp4 stream found." | |
input_path = stream.download() | |
except Exception as e: | |
return None, f"Error downloading video: {e}" | |
elif uploaded_file is not None: | |
input_path = uploaded_file.name | |
else: | |
return None, "Please provide an uploaded file or a YouTube link." | |
# Run pose detection (with save=True so that outputs are written to disk) | |
try: | |
results = model.predict(source=input_path, save=True) | |
except Exception as e: | |
return None, f"Error running prediction: {e}" | |
# Try to get the annotated output file: | |
output_path = None | |
try: | |
# Some YOLO versions may offer a 'save_path' attribute. | |
if hasattr(results[0], "save_path"): | |
output_path = results[0].save_path | |
else: | |
# Fallback: generate the annotated image using result.plot() | |
annotated = results[0].plot() # returns a numpy array with annotations | |
# Save the annotated image to a temporary file. | |
output_path = os.path.join(tempfile.gettempdir(), "annotated.jpg") | |
cv2.imwrite(output_path, annotated) | |
except Exception as e: | |
return None, f"Error processing the file: {e}" | |
# Clean up the downloaded video file if it came from YouTube. | |
if youtube_link and input_path and os.path.exists(input_path): | |
os.remove(input_path) | |
return output_path, "Success!" | |
# Define the Gradio interface with two outputs: one for the file and one for status text. | |
with gr.Blocks() as demo: | |
gr.Markdown("# Pose Detection with YOLO11-pose") | |
gr.Markdown("Upload an image/video or provide a YouTube link to detect human poses.") | |
with gr.Row(): | |
file_input = gr.File(label="Upload Image/Video") | |
youtube_input = gr.Textbox(label="Or enter a YouTube link", placeholder="https://...") | |
output_file = gr.File(label="Download Annotated Output") | |
output_text = gr.Textbox(label="Status", interactive=False) | |
run_button = gr.Button("Run Pose Detection") | |
run_button.click(process_input, inputs=[file_input, youtube_input], | |
outputs=[output_file, output_text]) | |
# Only launch the app if the script is executed directly. | |
if __name__ == "__main__": | |
demo.launch() | |