Spaces:
Running
Running
File size: 5,301 Bytes
5260c34 7c90da7 5260c34 7afb01c 7c90da7 fc38e58 5260c34 ef829ca 7c90da7 fc38e58 7c90da7 fc38e58 ef829ca fc38e58 7c90da7 5260c34 7afb01c 7c90da7 fc38e58 7c90da7 fc38e58 7afb01c fc38e58 7afb01c fc38e58 7afb01c 7c90da7 fc38e58 5260c34 7c90da7 fc38e58 7c90da7 fc38e58 5260c34 7afb01c 5260c34 fc38e58 5260c34 fc38e58 7c90da7 bbc9616 fc38e58 7c90da7 fc38e58 6ab3263 ef829ca fc38e58 ef829ca 7c90da7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import sys
import gradio as gr
import os
import tempfile
import cv2
import requests
from ultralytics import YOLO
# Remove extra CLI arguments that Spaces might pass.
sys.argv = [arg for arg in sys.argv if arg != "--import"]
# Load the YOLO11-pose model (auto-downloads if needed)
model = YOLO("yolo11n-pose.pt")
def process_input(uploaded_file, youtube_link, image_url, sensitivity):
"""
Process input from one of the three methods (Upload, YouTube, Image URL).
Priority: YouTube link > Image URL > Uploaded file.
The sensitivity slider value is passed as the confidence threshold.
Returns a tuple:
(download_file_path, display_file_path, status_message, dummy_state)
(The dummy_state is used because Gradio requires the same number of outputs.)
"""
input_path = None
# Priority 1: YouTube link
if youtube_link and youtube_link.strip():
try:
from pytube import YouTube
yt = YouTube(youtube_link)
stream = yt.streams.filter(file_extension='mp4', progressive=True)\
.order_by("resolution").desc().first()
if stream is None:
return None, None, "No suitable mp4 stream found.", ""
input_path = stream.download()
except Exception as e:
return None, None, f"Error downloading video: {e}", ""
# Priority 2: Image URL
elif image_url and image_url.strip():
try:
response = requests.get(image_url, stream=True)
if response.status_code != 200:
return None, None, f"Error downloading image: HTTP {response.status_code}", ""
temp_image_path = os.path.join(tempfile.gettempdir(), "downloaded_image.jpg")
with open(temp_image_path, "wb") as f:
f.write(response.content)
input_path = temp_image_path
except Exception as e:
return None, None, f"Error downloading image: {e}", ""
# Priority 3: Uploaded file
elif uploaded_file is not None:
input_path = uploaded_file.name
else:
return None, None, "Please provide an input using one of the methods.", ""
try:
# Pass the slider value as the confidence threshold.
results = model.predict(source=input_path, save=True, conf=sensitivity)
except Exception as e:
return None, None, f"Error running prediction: {e}", ""
output_path = None
try:
if hasattr(results[0], "save_path"):
output_path = results[0].save_path
else:
annotated = results[0].plot() # returns a numpy array
output_path = os.path.join(tempfile.gettempdir(), "annotated.jpg")
cv2.imwrite(output_path, annotated)
except Exception as e:
return None, None, f"Error processing the file: {e}", ""
# Clean up the temporary input if it was downloaded.
if ((youtube_link and youtube_link.strip()) or (image_url and image_url.strip())) and input_path and os.path.exists(input_path):
os.remove(input_path)
return output_path, output_path, "Success!", ""
# Build the Gradio interface with custom CSS for the result image.
with gr.Blocks(css="""
.result_img > img {
width: 100%;
height: auto;
object-fit: contain;
}
""") as demo:
# Header with scaled image (25% width) and title.
gr.HTML("<div style='text-align:center;'><img src='/crowdresult.jpg' style='width:25%;'/></div>")
gr.Markdown("## Pose Detection with YOLO11-pose")
# Create two columns.
with gr.Row():
# Left column: Input tabs and sensitivity slider.
with gr.Column(scale=1):
with gr.Tabs():
with gr.TabItem("Upload File"):
file_input = gr.File(label="Upload Image/Video")
with gr.TabItem("YouTube Link"):
youtube_input = gr.Textbox(label="YouTube Link", placeholder="https://...")
with gr.TabItem("Image URL"):
image_url_input = gr.Textbox(label="Image URL", placeholder="https://...")
sensitivity_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.5,
label="Sensitivity (Confidence Threshold)")
# Right column: Display result.
with gr.Column(scale=2):
output_display = gr.Image(label="Annotated Output", elem_classes="result_img")
output_file = gr.File(label="Download Annotated Output")
output_text = gr.Textbox(label="Status", interactive=False)
# Set up automatic triggers for each input type.
file_input.change(
fn=process_input,
inputs=[file_input, gr.State(""), gr.State(""), sensitivity_slider],
outputs=[output_file, output_display, output_text, gr.State()]
)
youtube_input.change(
fn=process_input,
inputs=[gr.State(None), youtube_input, gr.State(""), sensitivity_slider],
outputs=[output_file, output_display, output_text, gr.State()]
)
image_url_input.change(
fn=process_input,
inputs=[gr.State(None), gr.State(""), image_url_input, sensitivity_slider],
outputs=[output_file, output_display, output_text, gr.State()]
)
if __name__ == "__main__":
demo.launch()
|