import os import sys import tempfile import cv2 import requests from ultralytics import YOLO import streamlit as st # Set page configuration st.set_page_config( page_title="People Tracking with YOLO11-pose", page_icon="👥", layout="wide", initial_sidebar_state="expanded" ) st.title("People Tracking with YOLO11-pose") # Sidebar: Input method and settings st.sidebar.header("Input Settings") uploaded_file = st.sidebar.file_uploader("Upload Image/Video", type=["jpg", "jpeg", "png", "bmp", "webp", "mp4"]) youtube_link = st.sidebar.text_input("YouTube Link (optional)", "") image_url = st.sidebar.text_input("Image URL (optional)", "") sensitivity = st.sidebar.slider("Sensitivity (Confidence Threshold)", 0.0, 1.0, 0.2, step=0.01) process_button = st.sidebar.button("Process Input") # Define the video extensions for later use video_exts = [".mp4", ".mov", ".avi", ".webm"] def process_input(uploaded_file, youtube_link, image_url, sensitivity): input_path = None temp_files = [] # Input priority: YouTube link > Image URL > Uploaded file. if youtube_link and youtube_link.strip(): try: from pytubefix import YouTube yt = YouTube(youtube_link) stream = yt.streams.filter(file_extension='mp4', progressive=True).order_by("resolution").desc().first() if not stream: return None, None, None, "No suitable mp4 stream found." temp_path = os.path.join(tempfile.gettempdir(), f"yt_{os.urandom(8).hex()}.mp4") stream.download(output_path=tempfile.gettempdir(), filename=os.path.basename(temp_path)) input_path = temp_path temp_files.append(input_path) except Exception as e: return None, None, None, f"Error downloading YouTube video: {str(e)}" elif image_url and image_url.strip(): try: response = requests.get(image_url, stream=True, timeout=10) response.raise_for_status() temp_path = os.path.join(tempfile.gettempdir(), f"img_{os.urandom(8).hex()}.jpg") with open(temp_path, "wb") as f: f.write(response.content) input_path = temp_path temp_files.append(input_path) except Exception as e: return None, None, None, f"Error downloading image: {str(e)}" elif uploaded_file is not None: # Save the uploaded file to a temporary file ext = os.path.splitext(uploaded_file.name)[1] with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as tmp: tmp.write(uploaded_file.read()) input_path = tmp.name temp_files.append(input_path) else: return None, None, None, "Please provide an input." ext = os.path.splitext(input_path)[1].lower() output_path = None # Load the YOLO model (ensure the model file is available in your repository) model = YOLO("yolo11n-pose.pt") try: if ext in video_exts: # Video processing cap = cv2.VideoCapture(input_path) if not cap.isOpened(): return None, None, None, f"Cannot open video file: {input_path}" fps = cap.get(cv2.CAP_PROP_FPS) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) if fps <= 0 or width <= 0 or height <= 0: return None, None, None, "Invalid video properties detected." output_path = os.path.join(tempfile.gettempdir(), f"out_{os.urandom(8).hex()}.mp4") # Use 'mp4v' as codec fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) if not out.isOpened(): return None, None, None, "Video processing failed: No suitable encoder available." processed_frames = 0 while True: ret, frame = cap.read() if not ret: break # Process frame: convert to RGB, run YOLO, then annotate and convert back to BGR. frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = model.predict(source=frame_rgb, conf=sensitivity)[0] annotated_frame = results.plot() annotated_frame_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR) out.write(annotated_frame_bgr) processed_frames += 1 cap.release() out.release() temp_files.append(output_path) if processed_frames == 0: return None, None, None, "No frames processed from video." if not os.path.exists(output_path) or os.path.getsize(output_path) < 1024: return None, None, None, f"Output video created but too small ({os.path.getsize(output_path)} bytes) - processing failed." return output_path, None, output_path, f"Video processed successfully! ({processed_frames}/{frame_count} frames)" else: # Image processing results = model.predict(source=input_path, conf=sensitivity)[0] annotated = results.plot() output_path = os.path.join(tempfile.gettempdir(), f"out_{os.urandom(8).hex()}.jpg") cv2.imwrite(output_path, annotated) temp_files.append(output_path) return output_path, output_path, None, "Image processed successfully!" except Exception as e: return None, None, None, f"Processing error: {str(e)}" finally: # Clean up temporary files except the final output for f in temp_files[:-1]: if f and os.path.exists(f): try: os.remove(f) except: pass # When the user clicks "Process Input" if process_button: out_file, out_img, out_vid, status = process_input(uploaded_file, youtube_link, image_url, sensitivity) st.write(status) if out_img: st.image(out_img, caption="Annotated Output (Image)", use_column_width=True) if out_vid: st.video(out_vid) if out_file: with open(out_file, "rb") as f: st.download_button( label="Download Annotated Output", data=f, file_name=os.path.basename(out_file), mime="video/mp4" if os.path.splitext(out_file)[1].lower() in video_exts else "image/jpeg" )