import gradio as gr from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import torch # Load the model and processor processor = AutoImageProcessor.from_pretrained("prithivMLmods/Fire-Detection-Engine") model = AutoModelForImageClassification.from_pretrained("prithivMLmods/Fire-Detection-Engine") def predict(image): # Convert image to expected format image = Image.fromarray(image) inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class = logits.argmax(-1).item() return f"Predicted class: {predicted_class}" # Create Gradio app iface = gr.Interface( fn=predict, inputs=gr.Image(type="numpy"), outputs=gr.Textbox(), title="Fire Detection Engine", description="Upload an image to check for fire." ) iface.launch()