Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,45 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
import pdfplumber
|
6 |
|
7 |
-
# Load the model
|
8 |
-
|
|
|
|
|
9 |
|
10 |
def process_input(input_data):
|
11 |
if isinstance(input_data, str):
|
12 |
return handle_text(input_data)
|
13 |
elif isinstance(input_data, Image.Image):
|
14 |
return handle_image(input_data)
|
15 |
-
elif isinstance(input_data,
|
16 |
-
return handle_pdf(input_data)
|
17 |
else:
|
18 |
return "Unsupported input type."
|
19 |
|
20 |
def handle_text(text):
|
21 |
-
|
|
|
|
|
22 |
|
23 |
def handle_image(image):
|
24 |
return "Image processing not implemented yet."
|
25 |
|
26 |
-
def handle_pdf(
|
27 |
-
with pdfplumber.open(
|
28 |
text = "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()])
|
29 |
return handle_text(text)
|
30 |
|
31 |
# Create Gradio app
|
32 |
iface = gr.Interface(
|
33 |
fn=process_input,
|
34 |
-
inputs=[
|
|
|
|
|
|
|
|
|
35 |
outputs=gr.Textbox(),
|
36 |
title="Multimodal Chatbot",
|
37 |
description="Handles text, images, and PDFs with the same entry point."
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
import pdfplumber
|
6 |
|
7 |
+
# Load the model and tokenizer
|
8 |
+
model_name = "deepseek-ai/Janus-1.3B"
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
def process_input(input_data):
|
13 |
if isinstance(input_data, str):
|
14 |
return handle_text(input_data)
|
15 |
elif isinstance(input_data, Image.Image):
|
16 |
return handle_image(input_data)
|
17 |
+
elif isinstance(input_data, dict) and "name" in input_data:
|
18 |
+
return handle_pdf(input_data["name"])
|
19 |
else:
|
20 |
return "Unsupported input type."
|
21 |
|
22 |
def handle_text(text):
|
23 |
+
inputs = tokenizer(text, return_tensors="pt")
|
24 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
25 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
|
27 |
def handle_image(image):
|
28 |
return "Image processing not implemented yet."
|
29 |
|
30 |
+
def handle_pdf(pdf_path):
|
31 |
+
with pdfplumber.open(pdf_path) as pdf:
|
32 |
text = "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()])
|
33 |
return handle_text(text)
|
34 |
|
35 |
# Create Gradio app
|
36 |
iface = gr.Interface(
|
37 |
fn=process_input,
|
38 |
+
inputs=[
|
39 |
+
gr.Textbox(label="Enter text"),
|
40 |
+
gr.Image(label="Upload image"),
|
41 |
+
gr.File(label="Upload PDF")
|
42 |
+
],
|
43 |
outputs=gr.Textbox(),
|
44 |
title="Multimodal Chatbot",
|
45 |
description="Handles text, images, and PDFs with the same entry point."
|