Thomas Stone commited on
Commit
61c0cf3
·
verified ·
1 Parent(s): 02dde43

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -20
app.py CHANGED
@@ -1,11 +1,46 @@
1
  import gradio as gr
 
 
 
 
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
 
9
 
10
  def respond(
11
  message,
@@ -23,10 +58,13 @@ def respond(
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
 
 
 
 
26
  messages.append({"role": "user", "content": message})
27
 
28
  response = ""
29
-
30
  for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
@@ -35,31 +73,19 @@ def respond(
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a knowledgeable and professional chatbot designed to assist Colorado case workers in determining eligibility for public assistance programs. Your primary role is to provide accurate, up-to-date, and policy-compliant information on Medicaid, SNAP, TANF, CHP+, and other state and federal assistance programs. Responses should be clear, concise, and structured based on eligibility criteria, income limits, deductions, federal poverty level FPL guidelines, and program-specific requirements.", label="System message"),
50
-
51
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
  ],
61
  )
62
 
63
-
64
  if __name__ == "__main__":
65
  demo.launch()
 
1
  import gradio as gr
2
+ import fitz # PyMuPDF
3
+ import faiss
4
+ import numpy as np
5
+ from sentence_transformers import SentenceTransformer
6
  from huggingface_hub import InferenceClient
7
 
8
+ # Load embedding model
9
+ model = SentenceTransformer('all-MiniLM-L6-v2')
10
+
11
+ # Function to extract text from PDFs
12
+ def extract_text_from_pdf(pdf_path):
13
+ doc = fitz.open(pdf_path)
14
+ text = ""
15
+ for page in doc:
16
+ text += page.get_text() + "\n"
17
+ return text
18
+
19
+ # Load and process PDFs
20
+ pdf_files = ["eligibility_guidelines.pdf", "public_assistance_rules.pdf"] # Add PDF filenames
21
+ all_text = ""
22
+ for pdf in pdf_files:
23
+ all_text += extract_text_from_pdf(pdf)
24
+
25
+ # Split into chunks
26
+ chunk_size = 500
27
+ chunks = [all_text[i:i+chunk_size] for i in range(0, len(all_text), chunk_size)]
28
+
29
+ # Generate embeddings
30
+ embeddings = np.array([model.encode(chunk) for chunk in chunks])
31
+
32
+ # Create FAISS index
33
+ index = faiss.IndexFlatL2(embeddings.shape[1])
34
+ index.add(embeddings)
35
+
36
+ # Function to retrieve relevant text
37
+ def search_pdf(query, top_k=3):
38
+ query_embedding = model.encode(query).reshape(1, -1)
39
+ distances, indices = index.search(query_embedding, top_k)
40
+ return "\n\n".join([chunks[i] for i in indices[0]])
41
 
42
+ # Hugging Face LLM Client
43
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
44
 
45
  def respond(
46
  message,
 
58
  if val[1]:
59
  messages.append({"role": "assistant", "content": val[1]})
60
 
61
+ # Search for relevant text in PDFs
62
+ pdf_context = search_pdf(message)
63
+ messages.append({"role": "system", "content": f"Relevant PDF Info:\n{pdf_context}"})
64
+
65
  messages.append({"role": "user", "content": message})
66
 
67
  response = ""
 
68
  for message in client.chat_completion(
69
  messages,
70
  max_tokens=max_tokens,
 
73
  top_p=top_p,
74
  ):
75
  token = message.choices[0].delta.content
 
76
  response += token
77
  yield response
78
 
79
+ # Gradio Chat Interface
 
 
 
80
  demo = gr.ChatInterface(
81
  respond,
82
  additional_inputs=[
83
+ gr.Textbox(value="You are a knowledgeable chatbot assisting Colorado case workers with Medicaid, SNAP, TANF, CHP+, and other programs.", label="System message"),
 
84
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
85
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
86
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
87
  ],
88
  )
89
 
 
90
  if __name__ == "__main__":
91
  demo.launch()