Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import fitz # PyMuPDF for PDF reading
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from huggingface_hub import InferenceClient
|
9 |
+
|
10 |
+
# πΉ Define Directories and Chunk Size
|
11 |
+
APP_DIR = "./" # Root app folder
|
12 |
+
PDF_DIR = "./pdfs" # Where PDFs will be stored
|
13 |
+
CHUNK_SIZE = 2500 # Larger chunks for better context
|
14 |
+
|
15 |
+
# πΉ Ensure PDF Directory Exists
|
16 |
+
os.makedirs(PDF_DIR, exist_ok=True)
|
17 |
+
|
18 |
+
# πΉ Function to Auto-Detect PDFs in App Folder & Generate Download Links
|
19 |
+
def get_pdf_links():
|
20 |
+
base_url = "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/"
|
21 |
+
pdf_links = {}
|
22 |
+
|
23 |
+
for file in os.listdir(APP_DIR):
|
24 |
+
if file.endswith(".pdf"):
|
25 |
+
encoded_file = requests.utils.quote(file) # Encode spaces correctly
|
26 |
+
pdf_links[file] = f"{base_url}{encoded_file}?download=true"
|
27 |
+
|
28 |
+
return pdf_links
|
29 |
+
|
30 |
+
# πΉ Get List of PDFs & Their Download Links
|
31 |
+
PDF_FILES = get_pdf_links()
|
32 |
+
|
33 |
+
# πΉ Function to Download PDFs
|
34 |
+
def download_pdfs():
|
35 |
+
for filename, url in PDF_FILES.items():
|
36 |
+
pdf_path = os.path.join(PDF_DIR, filename)
|
37 |
+
if not os.path.exists(pdf_path):
|
38 |
+
print(f"π₯ Downloading {filename}...")
|
39 |
+
try:
|
40 |
+
response = requests.get(url, stream=True)
|
41 |
+
response.raise_for_status() # Ensure the request was successful
|
42 |
+
|
43 |
+
with open(pdf_path, "wb") as f:
|
44 |
+
for chunk in response.iter_content(chunk_size=8192):
|
45 |
+
f.write(chunk)
|
46 |
+
|
47 |
+
print(f"β
Successfully downloaded {filename}")
|
48 |
+
except Exception as e:
|
49 |
+
print(f"β Error downloading {filename}: {e}")
|
50 |
+
|
51 |
+
print("β
All PDFs downloaded.")
|
52 |
+
|
53 |
+
# πΉ Function to Extract Text from PDFs
|
54 |
+
def extract_text_from_pdfs():
|
55 |
+
all_text = ""
|
56 |
+
for pdf_file in os.listdir(PDF_DIR):
|
57 |
+
if pdf_file.endswith(".pdf"):
|
58 |
+
pdf_path = os.path.join(PDF_DIR, pdf_file)
|
59 |
+
doc = fitz.open(pdf_path)
|
60 |
+
for page in doc:
|
61 |
+
all_text += page.get_text("text") + "\n"
|
62 |
+
|
63 |
+
return all_text
|
64 |
+
|
65 |
+
# πΉ Initialize FAISS and Embed Text
|
66 |
+
def initialize_faiss():
|
67 |
+
download_pdfs()
|
68 |
+
text_data = extract_text_from_pdfs()
|
69 |
+
|
70 |
+
if not text_data:
|
71 |
+
raise ValueError("β No text extracted from PDFs!")
|
72 |
+
|
73 |
+
# Split text into chunks
|
74 |
+
chunks = [text_data[i:i+CHUNK_SIZE] for i in range(0, len(text_data), CHUNK_SIZE)]
|
75 |
+
|
76 |
+
# Generate embeddings
|
77 |
+
model = SentenceTransformer("multi-qa-mpnet-base-dot-v1")
|
78 |
+
embeddings = np.array([model.encode(chunk) for chunk in chunks])
|
79 |
+
|
80 |
+
# Create FAISS index
|
81 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
82 |
+
index.add(embeddings)
|
83 |
+
|
84 |
+
print("β
FAISS index initialized.")
|
85 |
+
|
86 |
+
return index, chunks
|
87 |
+
|
88 |
+
# πΉ Initialize FAISS on Startup
|
89 |
+
index, chunks = initialize_faiss()
|
90 |
+
|
91 |
+
# πΉ Function to Search FAISS
|
92 |
+
def search_policy(query, top_k=3):
|
93 |
+
query_embedding = SentenceTransformer("multi-qa-mpnet-base-dot-v1").encode(query).reshape(1, -1)
|
94 |
+
distances, indices = index.search(query_embedding, top_k)
|
95 |
+
|
96 |
+
return "\n\n".join([chunks[i] for i in indices[0] if i < len(chunks)])
|
97 |
+
|
98 |
+
# πΉ Hugging Face LLM Client
|
99 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
100 |
+
|
101 |
+
# πΉ Function to Handle Chat Responses
|
102 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
103 |
+
messages = [{"role": "system", "content": system_message}]
|
104 |
+
|
105 |
+
for val in history:
|
106 |
+
if val[0]:
|
107 |
+
messages.append({"role": "user", "content": val[0]})
|
108 |
+
if val[1]:
|
109 |
+
messages.append({"role": "assistant", "content": val[1]})
|
110 |
+
|
111 |
+
# πΉ Retrieve relevant policy info from FAISS
|
112 |
+
policy_context = search_policy(message)
|
113 |
+
|
114 |
+
if policy_context:
|
115 |
+
messages.append({"role": "assistant", "content": f"π **Relevant Policy Context:**\n\n{policy_context}"})
|
116 |
+
|
117 |
+
user_query_with_context = f"""
|
118 |
+
The following is the most relevant policy information retrieved from the official Colorado public assistance policies:
|
119 |
+
|
120 |
+
{policy_context}
|
121 |
+
|
122 |
+
Based on this information, answer the following question:
|
123 |
+
{message}
|
124 |
+
"""
|
125 |
+
messages.append({"role": "user", "content": user_query_with_context})
|
126 |
+
else:
|
127 |
+
messages.append({"role": "user", "content": message})
|
128 |
+
|
129 |
+
response = ""
|
130 |
+
for message in client.chat_completion(
|
131 |
+
messages,
|
132 |
+
max_tokens=max_tokens,
|
133 |
+
stream=True,
|
134 |
+
temperature=temperature,
|
135 |
+
top_p=top_p,
|
136 |
+
):
|
137 |
+
token = message.choices[0].delta.content
|
138 |
+
response += token
|
139 |
+
yield response
|
140 |
+
|
141 |
+
# πΉ Gradio Chat Interface
|
142 |
+
demo = gr.ChatInterface(
|
143 |
+
respond,
|
144 |
+
additional_inputs=[
|
145 |
+
gr.Textbox(
|
146 |
+
value="You are a knowledgeable chatbot designed to assist Colorado case workers with Medicaid, SNAP, TANF, CHP+, and other programs.",
|
147 |
+
label="System message"
|
148 |
+
),
|
149 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
150 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
151 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
152 |
+
],
|
153 |
+
)
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
demo.launch()
|