Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,12 +17,15 @@ st.set_page_config(
|
|
17 |
initial_sidebar_state="expanded"
|
18 |
)
|
19 |
|
20 |
-
|
|
|
|
|
21 |
try:
|
22 |
model = YOLO(model_path)
|
23 |
except Exception as ex:
|
24 |
st.error(f"Unable to load model from: {model_path}")
|
25 |
st.error(ex)
|
|
|
26 |
|
27 |
# -------------------------------
|
28 |
# App Title and Description
|
@@ -37,7 +40,7 @@ Use this app to detect wildfires in images, videos, updating image URLs, or live
|
|
37 |
tabs = st.tabs(["File Upload", "Image URL", "YouTube Live Stream"])
|
38 |
|
39 |
# ===============================
|
40 |
-
# Tab 1: File Upload Mode
|
41 |
with tabs[0]:
|
42 |
st.header("Detect Wildfire from Uploaded File")
|
43 |
col_input, col_result = st.columns(2)
|
@@ -52,19 +55,26 @@ with tabs[0]:
|
|
52 |
if uploaded_file:
|
53 |
file_type = uploaded_file.type.split('/')[0]
|
54 |
if file_type == "image":
|
|
|
55 |
image = PIL.Image.open(uploaded_file)
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
results = model.predict(image, conf=file_confidence)
|
59 |
annotated = results[0].plot()[:, :, ::-1]
|
60 |
col_result.image(annotated, caption="Detection Result", use_column_width=True)
|
61 |
with col_result.expander("Detection Details"):
|
62 |
for box in results[0].boxes:
|
63 |
col_result.write("Box (xywh):", box.xywh)
|
|
|
64 |
elif file_type == "video":
|
65 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
66 |
tfile.write(uploaded_file.read())
|
67 |
cap = cv2.VideoCapture(tfile.name)
|
|
|
68 |
if st.button("Detect Wildfire in Video", key="detect_file_video"):
|
69 |
while cap.isOpened():
|
70 |
ret, frame = cap.read()
|
@@ -114,7 +124,6 @@ with tabs[1]:
|
|
114 |
annotated = results[0].plot()[:, :, ::-1]
|
115 |
placeholder.image(annotated, channels="BGR", use_column_width=True)
|
116 |
time.sleep(1) # update interval in seconds
|
117 |
-
# Rerun the loop by breaking out of script execution cycle.
|
118 |
st.experimental_rerun()
|
119 |
except Exception as e:
|
120 |
col_result.error(f"Error fetching image: {e}")
|
@@ -149,7 +158,6 @@ with tabs[2]:
|
|
149 |
if not cap.isOpened():
|
150 |
st.error("Unable to open YouTube live stream.")
|
151 |
else:
|
152 |
-
# Provide a stop button for live stream detection
|
153 |
stop_live = st.button("Stop Live Detection", key="yt_stop")
|
154 |
while cap.isOpened() and not stop_live:
|
155 |
ret, frame = cap.read()
|
@@ -160,7 +168,6 @@ with tabs[2]:
|
|
160 |
annotated = results[0].plot()[:, :, ::-1]
|
161 |
col_result.image(annotated, channels="BGR", use_column_width=True)
|
162 |
time.sleep(0.05)
|
163 |
-
# Check for stop command during loop
|
164 |
stop_live = st.button("Stop Live Detection", key="yt_stop_loop")
|
165 |
cap.release()
|
166 |
except Exception as e:
|
|
|
17 |
initial_sidebar_state="expanded"
|
18 |
)
|
19 |
|
20 |
+
# IMPORTANT: Ensure the model file is a valid PyTorch model file.
|
21 |
+
# If using a URL, it must directly point to the raw .pt file, not an HTML page.
|
22 |
+
model_path = 'best.pt' # Change this to a valid path or direct URL to your model file
|
23 |
try:
|
24 |
model = YOLO(model_path)
|
25 |
except Exception as ex:
|
26 |
st.error(f"Unable to load model from: {model_path}")
|
27 |
st.error(ex)
|
28 |
+
st.stop() # Stop the app if the model isn't loaded
|
29 |
|
30 |
# -------------------------------
|
31 |
# App Title and Description
|
|
|
40 |
tabs = st.tabs(["File Upload", "Image URL", "YouTube Live Stream"])
|
41 |
|
42 |
# ===============================
|
43 |
+
# Tab 1: File Upload Mode (with auto-detection for images)
|
44 |
with tabs[0]:
|
45 |
st.header("Detect Wildfire from Uploaded File")
|
46 |
col_input, col_result = st.columns(2)
|
|
|
55 |
if uploaded_file:
|
56 |
file_type = uploaded_file.type.split('/')[0]
|
57 |
if file_type == "image":
|
58 |
+
# Load image and allow toggle between Original and Detection result
|
59 |
image = PIL.Image.open(uploaded_file)
|
60 |
+
display_option = st.radio("Display Mode", options=["Original", "Detection"], index=1)
|
61 |
+
|
62 |
+
if display_option == "Original":
|
63 |
+
col_result.image(image, caption="Original Image", use_column_width=True)
|
64 |
+
else:
|
65 |
+
# Auto-detect without a button click
|
66 |
results = model.predict(image, conf=file_confidence)
|
67 |
annotated = results[0].plot()[:, :, ::-1]
|
68 |
col_result.image(annotated, caption="Detection Result", use_column_width=True)
|
69 |
with col_result.expander("Detection Details"):
|
70 |
for box in results[0].boxes:
|
71 |
col_result.write("Box (xywh):", box.xywh)
|
72 |
+
|
73 |
elif file_type == "video":
|
74 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
75 |
tfile.write(uploaded_file.read())
|
76 |
cap = cv2.VideoCapture(tfile.name)
|
77 |
+
# For videos, detection is triggered with a button due to processing cost
|
78 |
if st.button("Detect Wildfire in Video", key="detect_file_video"):
|
79 |
while cap.isOpened():
|
80 |
ret, frame = cap.read()
|
|
|
124 |
annotated = results[0].plot()[:, :, ::-1]
|
125 |
placeholder.image(annotated, channels="BGR", use_column_width=True)
|
126 |
time.sleep(1) # update interval in seconds
|
|
|
127 |
st.experimental_rerun()
|
128 |
except Exception as e:
|
129 |
col_result.error(f"Error fetching image: {e}")
|
|
|
158 |
if not cap.isOpened():
|
159 |
st.error("Unable to open YouTube live stream.")
|
160 |
else:
|
|
|
161 |
stop_live = st.button("Stop Live Detection", key="yt_stop")
|
162 |
while cap.isOpened() and not stop_live:
|
163 |
ret, frame = cap.read()
|
|
|
168 |
annotated = results[0].plot()[:, :, ::-1]
|
169 |
col_result.image(annotated, channels="BGR", use_column_width=True)
|
170 |
time.sleep(0.05)
|
|
|
171 |
stop_live = st.button("Stop Live Detection", key="yt_stop_loop")
|
172 |
cap.release()
|
173 |
except Exception as e:
|