Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import os | |
| import urllib.parse | |
| import fitz # PyMuPDF for PDF reading | |
| import faiss | |
| import numpy as np | |
| import gradio as gr | |
| from sentence_transformers import SentenceTransformer | |
| from huggingface_hub import hf_hub_download, InferenceClient | |
| # πΉ Hugging Face Space Repository Details | |
| HF_REPO_ID = "tstone87/ccr-colorado" | |
| # πΉ Load Embedding Model (Optimized for QA Retrieval) | |
| model = SentenceTransformer("multi-qa-mpnet-base-dot-v1") | |
| # πΉ Define PDF Directory and Chunk Size | |
| PDF_DIR = "./pdfs" # Local folder for downloaded PDFs | |
| CHUNK_SIZE = 2500 # Larger chunks for better context | |
| # πΉ Ensure Directory Exists | |
| os.makedirs(PDF_DIR, exist_ok=True) | |
| # πΉ Function to Download PDFs from Hugging Face Space (Handles Spaces) | |
| def download_pdfs(): | |
| pdf_files = [ | |
| "SNAP 10 CCR 2506-1 .pdf", | |
| "Med 10 CCR 2505-10 8.100.pdf", | |
| ] | |
| for pdf_file in pdf_files: | |
| pdf_path = os.path.join(PDF_DIR, pdf_file) | |
| if not os.path.exists(pdf_path): # Download if not already present | |
| print(f"π₯ Downloading {pdf_file}...") | |
| # URL encode spaces correctly | |
| encoded_filename = urllib.parse.quote(pdf_file) | |
| try: | |
| hf_hub_download(repo_id=HF_REPO_ID, filename=encoded_filename, local_dir=PDF_DIR, force_download=True) | |
| print(f"β Successfully downloaded {pdf_file}") | |
| except Exception as e: | |
| print(f"β Error downloading {pdf_file}: {e}") | |
| print("β All PDFs downloaded.") | |
| # πΉ Function to Extract Text from PDFs | |
| def extract_text_from_pdfs(): | |
| all_text = "" | |
| for pdf_file in os.listdir(PDF_DIR): | |
| if pdf_file.endswith(".pdf"): | |
| pdf_path = os.path.join(PDF_DIR, pdf_file) | |
| doc = fitz.open(pdf_path) | |
| for page in doc: | |
| all_text += page.get_text("text") + "\n" | |
| return all_text | |
| # πΉ Initialize FAISS and Embed Text | |
| def initialize_faiss(): | |
| download_pdfs() | |
| text_data = extract_text_from_pdfs() | |
| if not text_data: | |
| raise ValueError("β No text extracted from PDFs!") | |
| # Split text into chunks | |
| chunks = [text_data[i:i+CHUNK_SIZE] for i in range(0, len(text_data), CHUNK_SIZE)] | |
| # Generate embeddings | |
| embeddings = np.array([model.encode(chunk) for chunk in chunks]) | |
| # Create FAISS index | |
| index = faiss.IndexFlatL2(embeddings.shape[1]) | |
| index.add(embeddings) | |
| print("β FAISS index initialized.") | |
| return index, chunks | |
| # πΉ Initialize FAISS on Startup | |
| index, chunks = initialize_faiss() | |
| # πΉ Function to Search FAISS | |
| def search_policy(query, top_k=3): | |
| query_embedding = model.encode(query).reshape(1, -1) | |
| distances, indices = index.search(query_embedding, top_k) | |
| return "\n\n".join([chunks[i] for i in indices[0] if i < len(chunks)]) | |
| # πΉ Hugging Face LLM Client | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| # πΉ Function to Handle Chat Responses | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| # πΉ Retrieve relevant policy info from FAISS | |
| policy_context = search_policy(message) | |
| if policy_context: | |
| messages.append({"role": "assistant", "content": f"π **Relevant Policy Context:**\n\n{policy_context}"}) | |
| user_query_with_context = f""" | |
| The following is the most relevant policy information retrieved from the official Colorado public assistance policies: | |
| {policy_context} | |
| Based on this information, answer the following question: | |
| {message} | |
| """ | |
| messages.append({"role": "user", "content": user_query_with_context}) | |
| else: | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| # πΉ Gradio Chat Interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="You are a knowledgeable chatbot designed to assist Colorado case workers with Medicaid, SNAP, TANF, CHP+, and other programs.", | |
| label="System message" | |
| ), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |