Spaces:
Sleeping
Sleeping
| import os | |
| import requests | |
| import fitz # PyMuPDF for PDF reading | |
| import faiss | |
| import numpy as np | |
| import gradio as gr | |
| from sentence_transformers import SentenceTransformer | |
| from huggingface_hub import InferenceClient | |
| # πΉ Define PDF Directory and Chunk Size | |
| PDF_DIR = "./pdfs" | |
| CHUNK_SIZE = 2500 # Larger chunks for better context | |
| # πΉ Ensure Directory Exists | |
| os.makedirs(PDF_DIR, exist_ok=True) | |
| # πΉ Direct URLs for PDF Downloads (Colorado Policy Documents) | |
| PDF_FILES = { | |
| "SNAP 10 CCR 2506-1.pdf": "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/SNAP%2010%20CCR%202506-1%20.pdf?download=true", | |
| "Med 10 CCR 2505-10 8.100.pdf": "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Med%2010%20CCR%202505-10%208.100.pdf?download=true", | |
| } | |
| # πΉ Function to Download PDFs | |
| def download_pdfs(): | |
| for filename, url in PDF_FILES.items(): | |
| pdf_path = os.path.join(PDF_DIR, filename) | |
| if not os.path.exists(pdf_path): | |
| print(f"π₯ Downloading {filename}...") | |
| try: | |
| response = requests.get(url, stream=True) | |
| response.raise_for_status() | |
| with open(pdf_path, "wb") as f: | |
| for chunk in response.iter_content(chunk_size=8192): | |
| f.write(chunk) | |
| print(f"β Downloaded {filename}") | |
| except Exception as e: | |
| print(f"β Error downloading {filename}: {e}") | |
| # πΉ Function to Extract Text from PDFs | |
| def extract_text_from_pdfs(): | |
| all_text = "" | |
| for pdf_file in os.listdir(PDF_DIR): | |
| if pdf_file.endswith(".pdf"): | |
| pdf_path = os.path.join(PDF_DIR, pdf_file) | |
| doc = fitz.open(pdf_path) | |
| for page in doc: | |
| all_text += page.get_text("text") + "\n" | |
| return all_text | |
| # πΉ Initialize FAISS Index | |
| def initialize_faiss(): | |
| download_pdfs() | |
| text_data = extract_text_from_pdfs() | |
| if not text_data: | |
| raise ValueError("β No text extracted from PDFs!") | |
| chunks = [text_data[i:i+CHUNK_SIZE] for i in range(0, len(text_data), CHUNK_SIZE)] | |
| model = SentenceTransformer("multi-qa-mpnet-base-dot-v1") | |
| embeddings = np.array([model.encode(chunk) for chunk in chunks]) | |
| index = faiss.IndexFlatL2(embeddings.shape[1]) | |
| index.add(embeddings) | |
| print("β FAISS index initialized.") | |
| return index, chunks | |
| # πΉ Initialize FAISS on Startup | |
| index, chunks = initialize_faiss() | |
| # πΉ Function to Search FAISS | |
| def search_policy(query, top_k=3): | |
| query_embedding = SentenceTransformer("multi-qa-mpnet-base-dot-v1").encode(query).reshape(1, -1) | |
| distances, indices = index.search(query_embedding, top_k) | |
| return "\n\n".join([chunks[i] for i in indices[0] if i < len(chunks)]) | |
| # πΉ Hugging Face LLM Client | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| # πΉ Function to Handle Chat Responses | |
| def respond(message, history): | |
| messages = [{"role": "system", "content": "You are a chatbot specializing in Colorado public assistance programs."}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| policy_context = search_policy(message) | |
| if policy_context: | |
| messages.append({"role": "assistant", "content": f"π **Colorado Policy Info:**\n\n{policy_context}"}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat_completion(messages, max_tokens=512, stream=True, temperature=0.7, top_p=0.95): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| # πΉ Gradio Chat Interface (Colorado-Themed) | |
| demo = gr.ChatInterface( | |
| respond, | |
| textbox=gr.Textbox(placeholder="Ask about Colorado public assistance programs...", interactive=True, show_label=False), | |
| submit_btn=gr.Button("Send"), | |
| chatbot=gr.Chatbot(), | |
| ) | |
| demo.launch() | |