ccr-colorado / app.py
Thomas Stone
Upload app.py
c470d37 verified
raw
history blame
4.28 kB
import gradio as gr
import faiss
import numpy as np
import os
from sentence_transformers import SentenceTransformer
from huggingface_hub import InferenceClient
# Load embedding model
model = SentenceTransformer('all-MiniLM-L6-v2')
# File paths
TEXT_FILE = "combined_text_documents.txt"
EMBEDDINGS_FILE = "policy_embeddings.npy"
INDEX_FILE = "faiss_index.bin"
# Load policy text from the file
if os.path.exists(TEXT_FILE):
with open(TEXT_FILE, "r", encoding="utf-8") as f:
POLICY_TEXT = f.read()
print("βœ… Loaded policy text from combined_text_documents.txt")
else:
print("❌ ERROR: combined_text_documents.txt not found! Ensure it's uploaded.")
POLICY_TEXT = ""
# Split text into chunks
chunk_size = 500
chunks = [POLICY_TEXT[i:i+chunk_size] for i in range(0, len(POLICY_TEXT), chunk_size)] if POLICY_TEXT else []
# Check if precomputed embeddings and FAISS index exist
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
print("βœ… Loading precomputed FAISS index and embeddings...")
embeddings = np.load(EMBEDDINGS_FILE)
index = faiss.read_index(INDEX_FILE)
else:
print("πŸš€ Generating embeddings and FAISS index (First-time setup)...")
if chunks:
embeddings = np.array([model.encode(chunk) for chunk in chunks])
np.save(EMBEDDINGS_FILE, embeddings) # Save for future runs
# Use FAISS optimized index for faster lookup
d = embeddings.shape[1]
nlist = 10 # Number of clusters
index = faiss.IndexIVFFlat(faiss.IndexFlatL2(d), d, nlist)
index.train(embeddings)
index.add(embeddings)
index.nprobe = 2 # Speed optimization
faiss.write_index(index, INDEX_FILE) # Save FAISS index
print("βœ… FAISS index created and saved.")
else:
print("❌ ERROR: No text to index. Check combined_text_documents.txt.")
index = None
# πŸ”Ή Function to search FAISS
def search_policy(query, top_k=3):
if index is None:
return "Error: FAISS index is not available."
query_embedding = model.encode(query).reshape(1, -1)
distances, indices = index.search(query_embedding, top_k)
return "\n\n".join([chunks[i] for i in indices[0] if i < len(chunks)])
# πŸ”Ή Hugging Face LLM Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# πŸ”Ή Search policy text efficiently
policy_context = search_policy(message)
if policy_context:
messages.append({"role": "system", "content": f"Relevant Policy Info:\n{policy_context}"})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# πŸ”Ή Gradio Chat Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a knowledgeable and professional chatbot designed to assist Colorado case workers in determining eligibility for public assistance programs. Your primary role is to provide accurate, up-to-date, and policy-compliant information on Medicaid, SNAP, TANF, CHP+, and other state and federal assistance programs. Responses should be clear, concise, and structured based on eligibility criteria, income limits, deductions, federal poverty level guidelines, and program-specific requirements.",
label="System message"
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()