Spaces:
Sleeping
Sleeping
import os | |
import tempfile | |
import cv2 | |
import streamlit as st | |
import PIL | |
from ultralytics import YOLO | |
# Required libraries (ensure these are in your requirements.txt): | |
# streamlit | |
# opencv-python-headless | |
# ultralytics | |
# Pillow | |
# Replace with your model's URL or local path | |
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt' # Your correct model | |
# Configure the page for Hugging Face Spaces | |
st.set_page_config( | |
page_title="Fire Watch using AI vision models", | |
page_icon="🔥", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# Sidebar for file upload and settings | |
with st.sidebar: | |
st.header("IMAGE/VIDEO UPLOAD") | |
source_file = st.file_uploader( | |
"Choose an image or video...", type=("jpg", "jpeg", "png", "bmp", "webp", "mp4")) | |
confidence = float(st.slider("Select Model Confidence", 20, 100, 30)) / 100 | |
video_option = st.selectbox( | |
"Select Video Shortening Option", | |
["Original FPS", "1 fps", "1 frame per 5 seconds", "1 frame per 10 seconds", "1 frame per 15 seconds"] | |
) | |
# Main page header and introduction images | |
st.title("Fire Watch: Detecting fire or smoke using AI vision models") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_1.jpeg", use_column_width=True) | |
with col2: | |
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True) | |
st.markdown(""" | |
Fires in Colorado present a serious challenge, threatening urban communities, highways, and even remote, unpopulated areas. Unexpected ncidents like lightning strike brushes fires can cause significant property damage, environmental degradation, and even loss of life. Early detection is critical to mitigating these risks. The idea for, Fire Watch, leverages a vision model called YOLOv8 for real-time detection of fires and smoke in images and videos, ensuring rapid response across Colorado’s diverse landscapes. | |
""") | |
st.markdown("---") | |
st.header("Fire Detection:") | |
col1, col2 = st.columns(2) | |
if source_file: | |
if source_file.type.split('/')[0] == 'image': | |
uploaded_image = PIL.Image.open(source_file) | |
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True) | |
else: | |
tfile = tempfile.NamedTemporaryFile(delete=False) | |
tfile.write(source_file.read()) | |
vidcap = cv2.VideoCapture(tfile.name) | |
else: | |
st.info("Please upload an image or video file to begin.") | |
# Load the YOLO model | |
try: | |
model = YOLO(model_path) | |
except Exception as ex: | |
st.error(f"Unable to load model. Check the specified path: {model_path}") | |
st.error(ex) | |
if st.sidebar.button("Let's Detect fire"): | |
if not source_file: | |
st.warning("No file uploaded!") | |
elif source_file.type.split('/')[0] == 'image': | |
# Process image input | |
res = model.predict(uploaded_image, conf=confidence) | |
boxes = res[0].boxes | |
res_plotted = res[0].plot()[:, :, ::-1] | |
with col2: | |
st.image(res_plotted, caption='Detected Image', use_column_width=True) | |
with st.expander("Detection Results"): | |
for box in boxes: | |
st.write(box.xywh) | |
else: | |
# Process video input and shorten video based on sampling option | |
processed_frames = [] | |
frame_count = 0 | |
# Video properties | |
orig_fps = vidcap.get(cv2.CAP_PROP_FPS) | |
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
# Determine sampling interval and output fps | |
if video_option == "Original FPS": | |
sample_interval = 1 # process every frame | |
output_fps = orig_fps | |
elif video_option == "1 fps": | |
sample_interval = int(orig_fps) if orig_fps > 0 else 1 | |
output_fps = 1 | |
elif video_option == "1 frame per 5 seconds": | |
sample_interval = int(orig_fps * 5) if orig_fps > 0 else 5 | |
output_fps = 1 | |
elif video_option == "1 frame per 10 seconds": | |
sample_interval = int(orig_fps * 10) if orig_fps > 0 else 10 | |
output_fps = 1 | |
elif video_option == "1 frame per 15 seconds": | |
sample_interval = int(orig_fps * 15) if orig_fps > 0 else 15 | |
output_fps = 1 | |
else: | |
sample_interval = 1 | |
output_fps = orig_fps | |
success, image = vidcap.read() | |
while success: | |
if frame_count % sample_interval == 0: | |
res = model.predict(image, conf=confidence) | |
res_plotted = res[0].plot()[:, :, ::-1] | |
processed_frames.append(res_plotted) | |
with col2: | |
st.image(res_plotted, caption=f'Detected Frame {frame_count}', use_column_width=True) | |
with st.expander("Detection Results"): | |
for box in res[0].boxes: | |
st.write(box.xywh) | |
frame_count += 1 | |
success, image = vidcap.read() | |
if processed_frames: | |
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
out = cv2.VideoWriter(temp_video_file.name, fourcc, output_fps, (width, height)) | |
for frame in processed_frames: | |
out.write(frame) | |
out.release() | |
st.success("Shortened video created successfully!") | |
with open(temp_video_file.name, 'rb') as video_file: | |
st.download_button( | |
label="Download Shortened Video", | |
data=video_file.read(), | |
file_name="shortened_video.mp4", | |
mime="video/mp4" | |
) | |
else: | |
st.error("No frames were processed from the video.") | |