Spaces:
Sleeping
Sleeping
import os | |
import requests | |
import fitz # PyMuPDF for PDF reading | |
import faiss | |
import numpy as np | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
from huggingface_hub import InferenceClient | |
# πΉ Define PDF Directory and Chunk Size | |
PDF_DIR = "./pdfs" | |
CHUNK_SIZE = 2500 # Larger chunks for better context | |
# πΉ Ensure Directory Exists | |
os.makedirs(PDF_DIR, exist_ok=True) | |
# πΉ Direct URLs for PDF Downloads (with `?download=true`) | |
PDF_FILES = { | |
"SNAP 10 CCR 2506-1.pdf": "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/SNAP%2010%20CCR%202506-1%20.pdf?download=true", | |
"Med 10 CCR 2505-10 8.100.pdf": "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Med%2010%20CCR%202505-10%208.100.pdf?download=true", | |
} | |
# πΉ Function to Download PDFs Directly from Given URLs | |
def download_pdfs(): | |
for filename, url in PDF_FILES.items(): | |
pdf_path = os.path.join(PDF_DIR, filename) | |
if not os.path.exists(pdf_path): | |
print(f"π₯ Downloading {filename}...") | |
try: | |
response = requests.get(url, stream=True) | |
response.raise_for_status() # Ensure the request was successful | |
with open(pdf_path, "wb") as f: | |
for chunk in response.iter_content(chunk_size=8192): | |
f.write(chunk) | |
print(f"β Successfully downloaded {filename}") | |
except Exception as e: | |
print(f"β Error downloading {filename}: {e}") | |
print("β All PDFs downloaded.") | |
# πΉ Function to Extract Text from PDFs | |
def extract_text_from_pdfs(): | |
all_text = "" | |
for pdf_file in os.listdir(PDF_DIR): | |
if pdf_file.endswith(".pdf"): | |
pdf_path = os.path.join(PDF_DIR, pdf_file) | |
doc = fitz.open(pdf_path) | |
for page in doc: | |
all_text += page.get_text("text") + "\n" | |
return all_text | |
# πΉ Initialize FAISS and Embed Text | |
def initialize_faiss(): | |
download_pdfs() | |
text_data = extract_text_from_pdfs() | |
if not text_data: | |
raise ValueError("β No text extracted from PDFs!") | |
# Split text into chunks | |
chunks = [text_data[i:i+CHUNK_SIZE] for i in range(0, len(text_data), CHUNK_SIZE)] | |
# Generate embeddings | |
model = SentenceTransformer("multi-qa-mpnet-base-dot-v1") | |
embeddings = np.array([model.encode(chunk) for chunk in chunks]) | |
# Create FAISS index | |
index = faiss.IndexFlatL2(embeddings.shape[1]) | |
index.add(embeddings) | |
print("β FAISS index initialized.") | |
return index, chunks | |
# πΉ Initialize FAISS on Startup | |
index, chunks = initialize_faiss() | |
# πΉ Function to Search FAISS | |
def search_policy(query, top_k=3): | |
query_embedding = SentenceTransformer("multi-qa-mpnet-base-dot-v1").encode(query).reshape(1, -1) | |
distances, indices = index.search(query_embedding, top_k) | |
return "\n\n".join([chunks[i] for i in indices[0] if i < len(chunks)]) | |
# πΉ Hugging Face LLM Client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# πΉ Function to Handle Chat Responses | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# πΉ Retrieve relevant policy info from FAISS | |
policy_context = search_policy(message) | |
if policy_context: | |
messages.append({"role": "assistant", "content": f"π **Relevant Policy Context:**\n\n{policy_context}"}) | |
user_query_with_context = f""" | |
The following is the most relevant policy information retrieved from the official Colorado public assistance policies: | |
{policy_context} | |
Based on this information, answer the following question: | |
{message} | |
""" | |
messages.append({"role": "user", "content": user_query_with_context}) | |
else: | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# πΉ Gradio Chat Interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a knowledgeable chatbot designed to assist Colorado case workers with Medicaid, SNAP, TANF, CHP+, and other programs.", | |
label="System message" | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |