File size: 8,944 Bytes
f0f9dff
f98a043
0ba77f1
f0f9dff
 
debd205
0ba77f1
 
24fa59e
f0f9dff
24fa59e
36fbec5
 
cac62cc
36fbec5
 
 
 
 
d44cea7
cac62cc
 
d44cea7
36fbec5
 
 
d44cea7
cac62cc
36fbec5
 
 
cac62cc
 
 
 
d44cea7
cac62cc
 
 
 
 
36fbec5
 
 
 
 
9d79b23
24fa59e
debd205
0ba77f1
 
 
24fa59e
 
0ba77f1
cac62cc
 
 
 
 
 
36fbec5
 
 
f0f9dff
24fa59e
 
f0f9dff
36fbec5
0ba77f1
24fa59e
 
36fbec5
 
24fa59e
36fbec5
24fa59e
 
 
 
 
 
 
 
36fbec5
24fa59e
 
 
 
 
f98a043
 
 
 
24fa59e
debd205
24fa59e
0ba77f1
f98a043
f0f9dff
36fbec5
0ba77f1
24fa59e
 
36fbec5
d44cea7
36fbec5
 
d44cea7
36fbec5
cac62cc
 
24fa59e
cac62cc
 
 
 
 
 
 
 
d44cea7
 
36fbec5
d44cea7
 
 
 
 
 
36fbec5
d44cea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24fa59e
debd205
d44cea7
 
 
36fbec5
d44cea7
36fbec5
d44cea7
 
 
 
 
 
36fbec5
d44cea7
cac62cc
36fbec5
d44cea7
 
 
0ba77f1
36fbec5
0ba77f1
24fa59e
 
36fbec5
 
 
 
d44cea7
 
 
 
 
 
 
 
 
 
 
24fa59e
d44cea7
 
 
36fbec5
d44cea7
36fbec5
 
d44cea7
36fbec5
d44cea7
36fbec5
 
d44cea7
36fbec5
d44cea7
 
36fbec5
 
d44cea7
36fbec5
 
 
 
d44cea7
 
36fbec5
 
d44cea7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import streamlit as st
import cv2
import PIL.Image
from ultralytics import YOLO
import tempfile
import time
import requests
import numpy as np
import streamlink

# Page Config
st.set_page_config(page_title="AI Fire Watch", page_icon="🌍", layout="wide")

# Lighter Background CSS with Darker Text
st.markdown(
    """
    <style>
    .stApp {
        background-color: #f5f5f5;
        color: #1a1a1a;
    }
    h1 {
        color: #1a1a1a;
    }
    .stTabs > div > button {
        background-color: #e0e0e0;
        color: #1a1a1a;
        font-weight: bold;
    }
    .stTabs > div > button:hover {
        background-color: #d0d0d0;
        color: #1a1a1a;
    }
    .stButton > button {
        background-color: #e0e0e0;
        color: #1a1a1a;
        font-weight: bold;
    }
    .stButton > button:hover {
        background-color: #d0d0d0;
        color: #1a1a1a;
    }
    </style>
    """,
    unsafe_allow_html=True
)

# Load Model
model_path = 'https://huggingface.co/spaces/ankitkupadhyay/fire_and_smoke/resolve/main/best.pt'
try:
    model = YOLO(model_path)
except Exception as ex:
    st.error(f"Model loading failed: {ex}")
    st.stop()

# Initialize Session State
if 'monitoring' not in st.session_state:
    st.session_state.monitoring = False
if 'current_webcam_url' not in st.session_state:
    st.session_state.current_webcam_url = None

# Header
st.title("AI Fire Watch")
st.markdown("Monitor fire and smoke in real-time with AI precision.")

# Tabs
tabs = st.tabs(["Upload", "Webcam", "YouTube"])

# Tab 1: Upload
with tabs[0]:
    col1, col2 = st.columns([1, 1])
    with col1:
        st.markdown("**Add Your File**")
        st.write("Upload an image or video to scan for fire or smoke.")
        uploaded_file = st.file_uploader("", type=["jpg", "jpeg", "png", "mp4"], label_visibility="collapsed")
        confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="upload_conf")
    with col2:
        if uploaded_file:
            file_type = uploaded_file.type.split('/')[0]
            if file_type == 'image':
                image = PIL.Image.open(uploaded_file)
                results = model.predict(image, conf=confidence)
                detected_image = results[0].plot()[:, :, ::-1]
                st.image(detected_image, use_column_width=True)
                st.write(f"Objects detected: {len(results[0].boxes)}")
            elif file_type == 'video':
                tfile = tempfile.NamedTemporaryFile(delete=False)
                tfile.write(uploaded_file.read())
                cap = cv2.VideoCapture(tfile.name)
                frame_placeholder = st.empty()
                while cap.isOpened():
                    ret, frame = cap.read()
                    if not ret:
                        break
                    results = model.predict(frame, conf=confidence)
                    detected_frame = results[0].plot()[:, :, ::-1]
                    frame_placeholder.image(detected_frame, use_column_width=True)
                    time.sleep(0.05)
                cap.release()

# Tab 2: Webcam
with tabs[1]:
    col1, col2 = st.columns([1, 1])
    with col1:
        st.markdown("**Webcam Feed**")
        st.write("Provide a webcam URL (image or video stream) to monitor for hazards.")
        webcam_url = st.text_input("Webcam URL", "http://<your_webcam_ip>/current.jpg", label_visibility="collapsed")
        confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="webcam_conf")
        refresh_rate = st.slider("Refresh Rate (seconds)", 1, 60, 30, key="webcam_rate")
        start = st.button("Begin Monitoring", key="webcam_start")
        stop = st.button("Stop Monitoring", key="webcam_stop")

        if start:
            st.session_state.monitoring = True
            st.session_state.current_webcam_url = webcam_url
        if stop or (st.session_state.monitoring and webcam_url != st.session_state.current_webcam_url):
            st.session_state.monitoring = False
            st.session_state.current_webcam_url = None

    with col2:
        if st.session_state.monitoring and st.session_state.current_webcam_url:
            frame_placeholder = st.empty()
            status_placeholder = st.empty()
            timer_placeholder = st.empty()
            
            # Try video stream first
            cap = cv2.VideoCapture(webcam_url)
            is_video_stream = cap.isOpened()
            
            while st.session_state.monitoring:
                try:
                    start_time = time.time()
                    if is_video_stream:
                        ret, frame = cap.read()
                        if not ret:
                            status_placeholder.error("Video stream interrupted.")
                            break
                    else:
                        # Fallback to image-based webcam
                        response = requests.get(webcam_url, timeout=5)
                        if response.status_code != 200:
                            status_placeholder.error(f"Fetch failed: HTTP {response.status_code}")
                            break
                        image_array = np.asarray(bytearray(response.content), dtype=np.uint8)
                        frame = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
                        if frame is None:
                            status_placeholder.error("Image decoding failed.")
                            break

                    results = model.predict(frame, conf=confidence)
                    detected_frame = results[0].plot()[:, :, ::-1]
                    frame_placeholder.image(detected_frame, use_column_width=True)
                    status_placeholder.write(f"Objects detected: {len(results[0].boxes)}")
                    
                    elapsed = time.time() - start_time
                    remaining = max(0, refresh_rate - elapsed)
                    timer_placeholder.write(f"Next scan: {int(remaining)}s")
                    
                    if not is_video_stream:
                        time.sleep(remaining)
                    else:
                        time.sleep(0.1)  # Faster update for video streams
                    
                except Exception as e:
                    status_placeholder.error(f"Error: {e}")
                    st.session_state.monitoring = False
                    break
            
            if is_video_stream:
                cap.release()

# Tab 3: YouTube
with tabs[2]:
    col1, col2 = st.columns([1, 1])
    with col1:
        st.markdown("**YouTube Live**")
        st.write("Enter a live YouTube URL to auto-analyze the stream.")
        youtube_url = st.text_input("YouTube URL", "https://www.youtube.com/watch?v=<id>", label_visibility="collapsed")
        confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="yt_conf")
        start_yt = st.button("Start Analysis", key="yt_start")
        stop_yt = st.button("Stop Analysis", key="yt_stop")

        if 'yt_monitoring' not in st.session_state:
            st.session_state.yt_monitoring = False
        
        if start_yt:
            st.session_state.yt_monitoring = True
        if stop_yt:
            st.session_state.yt_monitoring = False

    with col2:
        if st.session_state.yt_monitoring and youtube_url and youtube_url != "https://www.youtube.com/watch?v=<id>":
            status_placeholder = st.empty()
            frame_placeholder = st.empty()
            try:
                status_placeholder.write("Initializing stream...")
                streams = streamlink.streams(youtube_url)
                if not streams:
                    status_placeholder.error("No streams found. Check if the URL is a live stream.")
                else:
                    stream_url = streams["best"].url
                    cap = cv2.VideoCapture(stream_url)
                    if not cap.isOpened():
                        status_placeholder.error("Unable to open stream.")
                    else:
                        status_placeholder.write("Analyzing live stream...")
                        while st.session_state.yt_monitoring and cap.isOpened():
                            ret, frame = cap.read()
                            if not ret:
                                status_placeholder.error("Stream interrupted.")
                                break
                            results = model.predict(frame, conf=confidence)
                            detected_frame = results[0].plot()[:, :, ::-1]
                            frame_placeholder.image(detected_frame, use_column_width=True)
                            status_placeholder.write(f"Objects detected: {len(results[0].boxes)}")
                            time.sleep(0.1)  # Control frame rate
                        cap.release()
            except Exception as e:
                status_placeholder.error(f"Error: {e}")
            st.session_state.yt_monitoring = False