File size: 6,437 Bytes
f0f9dff
f98a043
0ba77f1
f0f9dff
 
debd205
0ba77f1
 
24fa59e
f0f9dff
24fa59e
36fbec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d79b23
24fa59e
debd205
0ba77f1
 
 
24fa59e
 
0ba77f1
36fbec5
 
 
f0f9dff
24fa59e
 
f0f9dff
36fbec5
0ba77f1
24fa59e
 
36fbec5
 
24fa59e
36fbec5
24fa59e
 
 
 
 
 
 
 
36fbec5
24fa59e
 
 
 
 
f98a043
 
 
 
24fa59e
debd205
24fa59e
0ba77f1
f98a043
f0f9dff
36fbec5
0ba77f1
24fa59e
 
36fbec5
 
 
 
 
24fa59e
 
36fbec5
 
 
 
 
 
 
 
 
debd205
36fbec5
 
 
 
debd205
24fa59e
debd205
36fbec5
 
 
 
 
 
 
 
 
 
 
 
 
0ba77f1
36fbec5
0ba77f1
24fa59e
 
36fbec5
 
 
 
24fa59e
36fbec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import streamlit as st
import cv2
import PIL.Image
from ultralytics import YOLO
import tempfile
import time
import requests
import numpy as np
import streamlink

# Page Config
st.set_page_config(page_title="AI Fire Watch", page_icon="🌍", layout="wide")

# Lighter Background CSS
st.markdown(
    """
    <style>
    .stApp {
        background-color: #f5f5f5;
        color: #333333;
    }
    .stTabs > div > button {
        background-color: #e0e0e0;
        color: #333333;
    }
    .stTabs > div > button:hover {
        background-color: #d0d0d0;
    }
    </style>
    """,
    unsafe_allow_html=True
)

# Load Model
model_path = 'https://huggingface.co/spaces/ankitkupadhyay/fire_and_smoke/resolve/main/best.pt'
try:
    model = YOLO(model_path)
except Exception as ex:
    st.error(f"Model loading failed: {ex}")
    st.stop()

# Header
st.title("AI Fire Watch")
st.markdown("Monitor fire and smoke in real-time with AI precision.")

# Tabs
tabs = st.tabs(["Upload", "Webcam", "YouTube"])

# Tab 1: Upload
with tabs[0]:
    col1, col2 = st.columns([1, 1])
    with col1:
        st.markdown("**Add Your File**")
        st.write("Upload an image or video to scan for fire or smoke.")
        uploaded_file = st.file_uploader("", type=["jpg", "jpeg", "png", "mp4"], label_visibility="collapsed")
        confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="upload_conf")
    with col2:
        if uploaded_file:
            file_type = uploaded_file.type.split('/')[0]
            if file_type == 'image':
                image = PIL.Image.open(uploaded_file)
                results = model.predict(image, conf=confidence)
                detected_image = results[0].plot()[:, :, ::-1]
                st.image(detected_image, use_column_width=True)
                st.write(f"Objects detected: {len(results[0].boxes)}")
            elif file_type == 'video':
                tfile = tempfile.NamedTemporaryFile(delete=False)
                tfile.write(uploaded_file.read())
                cap = cv2.VideoCapture(tfile.name)
                frame_placeholder = st.empty()
                while cap.isOpened():
                    ret, frame = cap.read()
                    if not ret:
                        break
                    results = model.predict(frame, conf=confidence)
                    detected_frame = results[0].plot()[:, :, ::-1]
                    frame_placeholder.image(detected_frame, use_column_width=True)
                    time.sleep(0.05)
                cap.release()

# Tab 2: Webcam
with tabs[1]:
    col1, col2 = st.columns([1, 1])
    with col1:
        st.markdown("**Webcam Feed**")
        st.write("Provide a webcam URL to check snapshots for hazards every 30 seconds.")
        webcam_url = st.text_input("Webcam URL", "http://<your_webcam_ip>/current.jpg", label_visibility="collapsed")
        confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="webcam_conf")
        start = st.button("Begin Monitoring", key="webcam_start")
    with col2:
        if start:
            image_placeholder = st.empty()
            timer_placeholder = st.empty()
            refresh_interval = 30  # Refresh every 30 seconds
            while True:
                start_time = time.time()
                try:
                    response = requests.get(webcam_url, timeout=5)
                    if response.status_code != 200:
                        st.error(f"Fetch failed: HTTP {response.status_code}")
                        break
                    image_array = np.asarray(bytearray(response.content), dtype=np.uint8)
                    frame = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
                    if frame is None:
                        st.error("Image decoding failed.")
                        break
                    results = model.predict(frame, conf=confidence)
                    detected_frame = results[0].plot()[:, :, ::-1]
                    image_placeholder.image(detected_frame, use_column_width=True)
                    elapsed = time.time() - start_time
                    remaining = max(0, refresh_interval - elapsed)
                    timer_placeholder.write(f"Next scan: {int(remaining)}s")
                    while remaining > 0:
                        time.sleep(1)
                        elapsed = time.time() - start_time
                        remaining = max(0, refresh_interval - elapsed)
                        timer_placeholder.write(f"Next scan: {int(remaining)}s")
                    st.experimental_rerun()
                except Exception as e:
                    st.error(f"Error: {e}")
                    break

# Tab 3: YouTube
with tabs[2]:
    col1, col2 = st.columns([1, 1])
    with col1:
        st.markdown("**YouTube Live**")
        st.write("Enter a live YouTube URL to auto-analyze the stream.")
        youtube_url = st.text_input("YouTube URL", "https://www.youtube.com/watch?v=<id>", label_visibility="collapsed")
        confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="yt_conf")
    with col2:
        if youtube_url and youtube_url != "https://www.youtube.com/watch?v=<id>":
            st.write("Analyzing live stream...")
            try:
                streams = streamlink.streams(youtube_url)
                if not streams:
                    st.error("No streams found. Check the URL.")
                else:
                    stream_url = streams["best"].to_url()
                    cap = cv2.VideoCapture(stream_url)
                    if not cap.isOpened():
                        st.error("Unable to open stream.")
                    else:
                        frame_placeholder = st.empty()
                        while cap.isOpened():
                            ret, frame = cap.read()
                            if not ret:
                                st.error("Stream interrupted.")
                                break
                            results = model.predict(frame, conf=confidence)
                            detected_frame = results[0].plot()[:, :, ::-1]
                            frame_placeholder.image(detected_frame, use_column_width=True)
                            st.write(f"Objects detected: {len(results[0].boxes)}")
                            time.sleep(1)  # Check every second
                        cap.release()
            except Exception as e:
                st.error(f"Error: {e}")