File size: 5,533 Bytes
f0f9dff
f98a043
0ba77f1
f0f9dff
 
debd205
0ba77f1
 
24fa59e
f0f9dff
24fa59e
 
9d79b23
24fa59e
debd205
0ba77f1
 
 
24fa59e
 
0ba77f1
24fa59e
 
 
f0f9dff
24fa59e
 
f0f9dff
24fa59e
0ba77f1
24fa59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f98a043
 
 
 
24fa59e
debd205
24fa59e
0ba77f1
f98a043
f0f9dff
24fa59e
0ba77f1
24fa59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
debd205
 
24fa59e
 
 
debd205
 
24fa59e
debd205
24fa59e
debd205
24fa59e
debd205
0ba77f1
24fa59e
0ba77f1
24fa59e
 
 
 
 
 
 
 
0ba77f1
24fa59e
 
 
 
 
 
 
 
 
 
 
 
 
0ba77f1
24fa59e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import streamlit as st
import cv2
import PIL.Image
from ultralytics import YOLO
import tempfile
import time
import requests
import numpy as np
import streamlink

# Page Config
st.set_page_config(page_title="WildfireWatch", page_icon="🔥", layout="wide")

# Load Model
model_path = 'https://huggingface.co/spaces/ankitkupadhyay/fire_and_smoke/resolve/main/best.pt'
try:
    model = YOLO(model_path)
except Exception as ex:
    st.error(f"Model loading failed: {ex}")
    st.stop()

# Minimalist Header
st.title("WildfireWatch")
st.markdown("AI-powered detection of fire and smoke.")

# Tabs
tabs = st.tabs(["Upload", "Webcam", "YouTube"])

# Tab 1: File Upload
with tabs[0]:
    col1, col2 = st.columns([1, 1])
    with col1:
        st.markdown("**Upload an image or video**")
        uploaded_file = st.file_uploader("", type=["jpg", "jpeg", "png", "mp4"], label_visibility="collapsed")
        confidence = st.slider("Confidence", 0.25, 1.0, 0.4, key="upload_conf")
    with col2:
        if uploaded_file:
            file_type = uploaded_file.type.split('/')[0]
            if file_type == 'image':
                image = PIL.Image.open(uploaded_file)
                results = model.predict(image, conf=confidence)
                detected_image = results[0].plot()[:, :, ::-1]
                st.image(detected_image, use_column_width=True)
                st.write(f"Detections: {len(results[0].boxes)}")
            elif file_type == 'video':
                tfile = tempfile.NamedTemporaryFile(delete=False)
                tfile.write(uploaded_file.read())
                cap = cv2.VideoCapture(tfile.name)
                frame_placeholder = st.empty()
                while cap.isOpened():
                    ret, frame = cap.read()
                    if not ret:
                        break
                    results = model.predict(frame, conf=confidence)
                    detected_frame = results[0].plot()[:, :, ::-1]
                    frame_placeholder.image(detected_frame, use_column_width=True)
                    time.sleep(0.05)
                cap.release()

# Tab 2: Webcam / Image URL
with tabs[1]:
    col1, col2 = st.columns([1, 1])
    with col1:
        st.markdown("**Webcam snapshot or stream**")
        webcam_url = st.text_input("URL", "http://<your_webcam_ip>/current.jpg", label_visibility="collapsed")
        confidence = st.slider("Confidence", 0.25, 1.0, 0.4, key="webcam_conf")
        mode = st.radio("", ["Snapshot", "Stream"], label_visibility="collapsed")
        start = st.button("Start", key="webcam_start")
    with col2:
        if start:
            if mode == "Snapshot":
                placeholder = st.empty()
                timer_placeholder = st.empty()
                refresh_interval = 5  # seconds
                while True:
                    start_time = time.time()
                    try:
                        response = requests.get(webcam_url, timeout=5)
                        image_array = np.asarray(bytearray(response.content), dtype=np.uint8)
                        frame = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
                        results = model.predict(frame, conf=confidence)
                        detected_frame = results[0].plot()[:, :, ::-1]
                        placeholder.image(detected_frame, use_column_width=True)
                        elapsed = time.time() - start_time
                        remaining = max(0, refresh_interval - elapsed)
                        timer_placeholder.write(f"Next refresh in: {int(remaining)}s")
                        time.sleep(1)
                        if remaining <= 0:
                            st.experimental_rerun()
                    except Exception as e:
                        st.error(f"Error: {e}")
                        break
            else:
                cap = cv2.VideoCapture(webcam_url)
                frame_placeholder = st.empty()
                while cap.isOpened():
                    ret, frame = cap.read()
                    if not ret:
                        st.error("Stream failed.")
                        break
                    results = model.predict(frame, conf=confidence)
                    detected_frame = results[0].plot()[:, :, ::-1]
                    frame_placeholder.image(detected_frame, use_column_width=True)
                    time.sleep(0.05)

# Tab 3: YouTube Live Stream
with tabs[2]:
    col1, col2 = st.columns([1, 1])
    with col1:
        st.markdown("**YouTube live stream**")
        youtube_url = st.text_input("URL", "https://www.youtube.com/watch?v=<id>", label_visibility="collapsed")
        confidence = st.slider("Confidence", 0.25, 1.0, 0.4, key="yt_conf")
        start = st.button("Start", key="yt_start")
    with col2:
        if start:
            streams = streamlink.streams(youtube_url)
            if streams:
                stream_url = streams["best"].to_url()
                cap = cv2.VideoCapture(stream_url)
                frame_placeholder = st.empty()
                while cap.isOpened():
                    ret, frame = cap.read()
                    if not ret:
                        st.error("Stream failed.")
                        break
                    results = model.predict(frame, conf=confidence)
                    detected_frame = results[0].plot()[:, :, ::-1]
                    frame_placeholder.image(detected_frame, use_column_width=True)
                    time.sleep(0.05)
            else:
                st.error("No stream found.")