Update space
Browse files- app.py +79 -32
- src/populate.py +24 -7
app.py
CHANGED
|
@@ -183,29 +183,6 @@ with demo:
|
|
| 183 |
)
|
| 184 |
)
|
| 185 |
|
| 186 |
-
with gr.TabItem("🎯 Mixed", elem_id="llm-benchmark-tab-table", id=1):
|
| 187 |
-
DESCRIPTION_TEXT = """
|
| 188 |
-
Overall dimension measures the comprehensive performance of LLMs across diverse tasks.
|
| 189 |
-
We start with diverse questions from the widely-used [MT-Bench](https://arxiv.org/abs/2306.05685),
|
| 190 |
-
coving a wide range of domains, including writing, roleplay, extraction, reasoning, math, coding, knowledge I (STEM), and knowledge II (humanities/social science).
|
| 191 |
-
"""
|
| 192 |
-
gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text")
|
| 193 |
-
|
| 194 |
-
with gr.TabItem("MT-Bench", elem_id="mt-bench_subtab", id=0, elem_classes="subtab"):
|
| 195 |
-
leaderboard = overall_leaderboard(
|
| 196 |
-
get_model_leaderboard_df(
|
| 197 |
-
model_result_path,
|
| 198 |
-
benchmark_cols=[
|
| 199 |
-
AutoEvalColumn.rank_overall.name,
|
| 200 |
-
AutoEvalColumn.model.name,
|
| 201 |
-
AutoEvalColumn.score_overall.name,
|
| 202 |
-
AutoEvalColumn.sd_overall.name,
|
| 203 |
-
AutoEvalColumn.license.name,
|
| 204 |
-
AutoEvalColumn.organization.name,
|
| 205 |
-
AutoEvalColumn.knowledge_cutoff.name,
|
| 206 |
-
],
|
| 207 |
-
rank_col=[AutoEvalColumn.rank_overall.name],
|
| 208 |
-
))
|
| 209 |
|
| 210 |
|
| 211 |
with gr.TabItem("🔢 Math", elem_id="math-tab-table", id=2):
|
|
@@ -232,11 +209,18 @@ with demo:
|
|
| 232 |
model_result_path,
|
| 233 |
benchmark_cols=[
|
| 234 |
AutoEvalColumn.model.name,
|
| 235 |
-
AutoEvalColumn.
|
| 236 |
-
AutoEvalColumn.
|
| 237 |
-
AutoEvalColumn.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
],
|
| 239 |
-
rank_col=[],
|
| 240 |
)
|
| 241 |
)
|
| 242 |
|
|
@@ -292,6 +276,21 @@ with demo:
|
|
| 292 |
)
|
| 293 |
)
|
| 294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
with gr.TabItem("🧠 Reasoning", elem_id="reasonong-tab-table", id=3):
|
| 296 |
DESCRIPTION_TEXT = """
|
| 297 |
Reasoning is a broad domain for evaluating LLMs, but traditional tasks like commonsense reasoning have become less effective in differentiating modern LLMs.
|
|
@@ -323,10 +322,16 @@ with demo:
|
|
| 323 |
model_result_path,
|
| 324 |
benchmark_cols=[
|
| 325 |
AutoEvalColumn.model.name,
|
| 326 |
-
AutoEvalColumn.
|
| 327 |
-
AutoEvalColumn.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
],
|
| 329 |
-
rank_col=[],
|
| 330 |
)
|
| 331 |
)
|
| 332 |
|
|
@@ -364,6 +369,19 @@ with demo:
|
|
| 364 |
)
|
| 365 |
)
|
| 366 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
with gr.TabItem("🔬 Science", elem_id="science-table", id=4):
|
| 368 |
CURRENT_TEXT = """
|
| 369 |
Scientific tasks are crucial for evaluating LLMs, requiring both domain-specific knowledge and reasoning capabilities.
|
|
@@ -385,9 +403,14 @@ with demo:
|
|
| 385 |
model_result_path,
|
| 386 |
benchmark_cols=[
|
| 387 |
AutoEvalColumn.model.name,
|
| 388 |
-
AutoEvalColumn.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
],
|
| 390 |
-
rank_col=[],
|
| 391 |
)
|
| 392 |
)
|
| 393 |
|
|
@@ -468,6 +491,30 @@ with demo:
|
|
| 468 |
|
| 469 |
|
| 470 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
|
| 472 |
|
| 473 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=6):
|
|
|
|
| 183 |
)
|
| 184 |
)
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
|
| 188 |
with gr.TabItem("🔢 Math", elem_id="math-tab-table", id=2):
|
|
|
|
| 209 |
model_result_path,
|
| 210 |
benchmark_cols=[
|
| 211 |
AutoEvalColumn.model.name,
|
| 212 |
+
AutoEvalColumn.license.name,
|
| 213 |
+
AutoEvalColumn.organization.name,
|
| 214 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
| 215 |
+
|
| 216 |
+
AutoEvalColumn.score_math_algebra.name,
|
| 217 |
+
AutoEvalColumn.score_math_geometry.name,
|
| 218 |
+
AutoEvalColumn.score_math_probability.name,
|
| 219 |
+
# AutoEvalColumn.rank_math_algebra.name,
|
| 220 |
+
# AutoEvalColumn.rank_math_geometry.name,
|
| 221 |
+
# AutoEvalColumn.rank_math_probability.name,
|
| 222 |
],
|
| 223 |
+
rank_col=['sort_by_score'],
|
| 224 |
)
|
| 225 |
)
|
| 226 |
|
|
|
|
| 276 |
)
|
| 277 |
)
|
| 278 |
|
| 279 |
+
|
| 280 |
+
# with gr.TabItem("Sort_by_rank", elem_id="math_sort_by_rank_subtab", id=4, elem_classes="subtab"):
|
| 281 |
+
# leaderboard = overall_leaderboard(
|
| 282 |
+
# get_model_leaderboard_df(
|
| 283 |
+
# model_result_path,
|
| 284 |
+
# benchmark_cols=[
|
| 285 |
+
# AutoEvalColumn.model.name,
|
| 286 |
+
# AutoEvalColumn.rank_math_algebra.name,
|
| 287 |
+
# AutoEvalColumn.rank_math_geometry.name,
|
| 288 |
+
# AutoEvalColumn.rank_math_probability.name,
|
| 289 |
+
# ],
|
| 290 |
+
# rank_col=[],
|
| 291 |
+
# )
|
| 292 |
+
# )
|
| 293 |
+
|
| 294 |
with gr.TabItem("🧠 Reasoning", elem_id="reasonong-tab-table", id=3):
|
| 295 |
DESCRIPTION_TEXT = """
|
| 296 |
Reasoning is a broad domain for evaluating LLMs, but traditional tasks like commonsense reasoning have become less effective in differentiating modern LLMs.
|
|
|
|
| 322 |
model_result_path,
|
| 323 |
benchmark_cols=[
|
| 324 |
AutoEvalColumn.model.name,
|
| 325 |
+
AutoEvalColumn.license.name,
|
| 326 |
+
AutoEvalColumn.organization.name,
|
| 327 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
| 328 |
+
|
| 329 |
+
AutoEvalColumn.score_reason_logical.name,
|
| 330 |
+
AutoEvalColumn.score_reason_social.name,
|
| 331 |
+
# AutoEvalColumn.rank_reason_logical.name,
|
| 332 |
+
# AutoEvalColumn.rank_reason_social.name,
|
| 333 |
],
|
| 334 |
+
rank_col=['sort_by_score'],
|
| 335 |
)
|
| 336 |
)
|
| 337 |
|
|
|
|
| 369 |
)
|
| 370 |
)
|
| 371 |
|
| 372 |
+
# with gr.TabItem("Sort_by_rank", elem_id="reasoning_sort_by_rank_subtab", id=3, elem_classes="subtab"):
|
| 373 |
+
# leaderboard = overall_leaderboard(
|
| 374 |
+
# get_model_leaderboard_df(
|
| 375 |
+
# model_result_path,
|
| 376 |
+
# benchmark_cols=[
|
| 377 |
+
# AutoEvalColumn.model.name,
|
| 378 |
+
# AutoEvalColumn.rank_reason_logical.name,
|
| 379 |
+
# AutoEvalColumn.rank_reason_social.name,
|
| 380 |
+
# ],
|
| 381 |
+
# rank_col=[],
|
| 382 |
+
# )
|
| 383 |
+
# )
|
| 384 |
+
|
| 385 |
with gr.TabItem("🔬 Science", elem_id="science-table", id=4):
|
| 386 |
CURRENT_TEXT = """
|
| 387 |
Scientific tasks are crucial for evaluating LLMs, requiring both domain-specific knowledge and reasoning capabilities.
|
|
|
|
| 403 |
model_result_path,
|
| 404 |
benchmark_cols=[
|
| 405 |
AutoEvalColumn.model.name,
|
| 406 |
+
AutoEvalColumn.license.name,
|
| 407 |
+
AutoEvalColumn.organization.name,
|
| 408 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
| 409 |
+
|
| 410 |
+
AutoEvalColumn.score_chemistry.name,
|
| 411 |
+
# AutoEvalColumn.rank_chemistry.name,
|
| 412 |
],
|
| 413 |
+
rank_col=['sort_by_score'],
|
| 414 |
)
|
| 415 |
)
|
| 416 |
|
|
|
|
| 491 |
|
| 492 |
|
| 493 |
|
| 494 |
+
with gr.TabItem("🎯 Mixed", elem_id="llm-benchmark-tab-table", id=1):
|
| 495 |
+
DESCRIPTION_TEXT = """
|
| 496 |
+
Overall dimension measures the comprehensive performance of LLMs across diverse tasks.
|
| 497 |
+
We start with diverse questions from the widely-used [MT-Bench](https://arxiv.org/abs/2306.05685),
|
| 498 |
+
coving a wide range of domains, including writing, roleplay, extraction, reasoning, math, coding, knowledge I (STEM), and knowledge II (humanities/social science).
|
| 499 |
+
"""
|
| 500 |
+
gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text")
|
| 501 |
+
|
| 502 |
+
with gr.TabItem("MT-Bench", elem_id="mt-bench_subtab", id=0, elem_classes="subtab"):
|
| 503 |
+
leaderboard = overall_leaderboard(
|
| 504 |
+
get_model_leaderboard_df(
|
| 505 |
+
model_result_path,
|
| 506 |
+
benchmark_cols=[
|
| 507 |
+
AutoEvalColumn.rank_overall.name,
|
| 508 |
+
AutoEvalColumn.model.name,
|
| 509 |
+
AutoEvalColumn.score_overall.name,
|
| 510 |
+
AutoEvalColumn.sd_overall.name,
|
| 511 |
+
AutoEvalColumn.license.name,
|
| 512 |
+
AutoEvalColumn.organization.name,
|
| 513 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
| 514 |
+
],
|
| 515 |
+
rank_col=[AutoEvalColumn.rank_overall.name],
|
| 516 |
+
))
|
| 517 |
+
|
| 518 |
|
| 519 |
|
| 520 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=6):
|
src/populate.py
CHANGED
|
@@ -24,7 +24,7 @@ def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: lis
|
|
| 24 |
|
| 25 |
# if there is one col in rank_col, this is an isolated dimension to rank by
|
| 26 |
# sort by that selected column and remove NaN values
|
| 27 |
-
if rank_col:
|
| 28 |
# df = df.dropna(subset=benchmark_cols)
|
| 29 |
df = df.dropna(subset=rank_col)
|
| 30 |
df = df.fillna(0.00)
|
|
@@ -32,8 +32,29 @@ def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: lis
|
|
| 32 |
df = df.sort_values(by=[rank_col[0]], ascending=True)
|
| 33 |
# print(rank_col, benchmark_cols)
|
| 34 |
# print(df.head())
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
avg_rank = df.iloc[:, 1:].mean(axis=1)
|
| 38 |
df["Average Rank"] = avg_rank.round(decimals=4)
|
| 39 |
df = df.sort_values(by=["Average Rank"], ascending=True)
|
|
@@ -46,10 +67,6 @@ def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: lis
|
|
| 46 |
df.insert(0, 'Rank', rank)
|
| 47 |
|
| 48 |
|
| 49 |
-
for col in benchmark_cols:
|
| 50 |
-
if 'Std dev' in col or 'Score' in col:
|
| 51 |
-
df[col] = (df[col]).map('{:.2f}'.format)
|
| 52 |
-
df[col] = df[col].round(decimals=2)
|
| 53 |
|
| 54 |
|
| 55 |
# for col in benchmark_cols:
|
|
|
|
| 24 |
|
| 25 |
# if there is one col in rank_col, this is an isolated dimension to rank by
|
| 26 |
# sort by that selected column and remove NaN values
|
| 27 |
+
if rank_col and rank_col[0] != "sort_by_score":
|
| 28 |
# df = df.dropna(subset=benchmark_cols)
|
| 29 |
df = df.dropna(subset=rank_col)
|
| 30 |
df = df.fillna(0.00)
|
|
|
|
| 32 |
df = df.sort_values(by=[rank_col[0]], ascending=True)
|
| 33 |
# print(rank_col, benchmark_cols)
|
| 34 |
# print(df.head())
|
| 35 |
+
|
| 36 |
+
for col in benchmark_cols:
|
| 37 |
+
if 'Std dev' in col or 'Score' in col:
|
| 38 |
+
df[col] = (df[col]).map('{:.2f}'.format)
|
| 39 |
+
df[col] = df[col].round(decimals=2)
|
| 40 |
+
|
| 41 |
+
elif rank_col and rank_col[0] == "sort_by_score": # sorting by averaging all benchmark cols, except cols before offset_idx
|
| 42 |
+
offset_idx = 4
|
| 43 |
+
avg_scores = df.iloc[:, offset_idx:].mean(axis=1)
|
| 44 |
+
df.insert(1, "Average Score", avg_scores)
|
| 45 |
+
|
| 46 |
+
df["Average Score"] = avg_scores.round(decimals=4)
|
| 47 |
+
df = df.sort_values(by=["Average Score"], ascending=False)
|
| 48 |
+
df["Average Score"] = df["Average Score"].map('{:.2f}'.format)
|
| 49 |
+
|
| 50 |
+
df = df.drop(columns=benchmark_cols[offset_idx:])
|
| 51 |
+
# print(benchmark_cols)
|
| 52 |
+
# print(df.head())
|
| 53 |
+
# insert a rank column
|
| 54 |
+
rank = np.arange(1, len(df)+1)
|
| 55 |
+
df.insert(0, 'Rank', rank)
|
| 56 |
+
|
| 57 |
+
else: # when rank_col, the first in benchmark_cols is empty, sort by averaging all the benchmarks, except the first one
|
| 58 |
avg_rank = df.iloc[:, 1:].mean(axis=1)
|
| 59 |
df["Average Rank"] = avg_rank.round(decimals=4)
|
| 60 |
df = df.sort_values(by=["Average Rank"], ascending=True)
|
|
|
|
| 67 |
df.insert(0, 'Rank', rank)
|
| 68 |
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
|
| 72 |
# for col in benchmark_cols:
|