Update space
Browse files- app.py +7 -7
- src/populate.py +3 -2
app.py
CHANGED
|
@@ -105,8 +105,8 @@ def init_leaderboard(dataframe):
|
|
| 105 |
# model_result_path = "./src/results/models_2024-10-08-17:39:21.001582.jsonl"
|
| 106 |
# model_result_path = "./src/results/models_2024-10-09-05:17:38.810960.json"
|
| 107 |
# model_result_path = "./src/results/models_2024-10-09-06:22:21.122422.json"
|
| 108 |
-
|
| 109 |
-
model_result_path = "./src/results/models_2024-10-18-14:06:13.588399.json"
|
| 110 |
# model_leaderboard_df = get_model_leaderboard_df(model_result_path)
|
| 111 |
|
| 112 |
|
|
@@ -170,13 +170,13 @@ with demo:
|
|
| 170 |
# AutoEvalColumn.rank_overall.name,
|
| 171 |
AutoEvalColumn.model.name,
|
| 172 |
AutoEvalColumn.rank_overall.name,
|
| 173 |
-
|
| 174 |
-
|
| 175 |
AutoEvalColumn.rank_math_probability.name,
|
| 176 |
AutoEvalColumn.rank_reason_logical.name,
|
| 177 |
-
|
| 178 |
AutoEvalColumn.rank_chemistry.name,
|
| 179 |
-
|
| 180 |
],
|
| 181 |
rank_col=[],
|
| 182 |
)
|
|
@@ -265,7 +265,7 @@ with demo:
|
|
| 265 |
AutoEvalColumn.rank_math_probability.name,
|
| 266 |
AutoEvalColumn.model.name,
|
| 267 |
AutoEvalColumn.score_math_probability.name,
|
| 268 |
-
|
| 269 |
AutoEvalColumn.license.name,
|
| 270 |
AutoEvalColumn.organization.name,
|
| 271 |
AutoEvalColumn.knowledge_cutoff.name,
|
|
|
|
| 105 |
# model_result_path = "./src/results/models_2024-10-08-17:39:21.001582.jsonl"
|
| 106 |
# model_result_path = "./src/results/models_2024-10-09-05:17:38.810960.json"
|
| 107 |
# model_result_path = "./src/results/models_2024-10-09-06:22:21.122422.json"
|
| 108 |
+
model_result_path = "./src/results/models_2024-10-10-06:18:54.263527.json"
|
| 109 |
+
# model_result_path = "./src/results/models_2024-10-18-14:06:13.588399.json"
|
| 110 |
# model_leaderboard_df = get_model_leaderboard_df(model_result_path)
|
| 111 |
|
| 112 |
|
|
|
|
| 170 |
# AutoEvalColumn.rank_overall.name,
|
| 171 |
AutoEvalColumn.model.name,
|
| 172 |
AutoEvalColumn.rank_overall.name,
|
| 173 |
+
AutoEvalColumn.rank_math_algebra.name,
|
| 174 |
+
AutoEvalColumn.rank_math_geometry.name,
|
| 175 |
AutoEvalColumn.rank_math_probability.name,
|
| 176 |
AutoEvalColumn.rank_reason_logical.name,
|
| 177 |
+
AutoEvalColumn.rank_reason_social.name,
|
| 178 |
AutoEvalColumn.rank_chemistry.name,
|
| 179 |
+
AutoEvalColumn.rank_cpp.name,
|
| 180 |
],
|
| 181 |
rank_col=[],
|
| 182 |
)
|
|
|
|
| 265 |
AutoEvalColumn.rank_math_probability.name,
|
| 266 |
AutoEvalColumn.model.name,
|
| 267 |
AutoEvalColumn.score_math_probability.name,
|
| 268 |
+
AutoEvalColumn.sd_math_probability.name,
|
| 269 |
AutoEvalColumn.license.name,
|
| 270 |
AutoEvalColumn.organization.name,
|
| 271 |
AutoEvalColumn.knowledge_cutoff.name,
|
src/populate.py
CHANGED
|
@@ -19,7 +19,7 @@ def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: lis
|
|
| 19 |
df = pd.DataFrame.from_records(all_data_json)
|
| 20 |
|
| 21 |
df = df[benchmark_cols]
|
| 22 |
-
print(df.head())
|
| 23 |
|
| 24 |
if rank_col: # if there is one col in rank_col, sort by that column and remove NaN values
|
| 25 |
df = df.dropna(subset=benchmark_cols)
|
|
@@ -48,7 +48,8 @@ def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: lis
|
|
| 48 |
# df[col] = (df[col]).map('{:.2f}'.format)
|
| 49 |
# else:
|
| 50 |
# df[col] = (df[col]*100).map('{:.2f}'.format)
|
| 51 |
-
if "Chemistry" in col or "C++" in col
|
|
|
|
| 52 |
df[col] = (df[col]).map('{:.2f}'.format)
|
| 53 |
else:
|
| 54 |
df[col] = (df[col]*100).map('{:.2f}'.format)
|
|
|
|
| 19 |
df = pd.DataFrame.from_records(all_data_json)
|
| 20 |
|
| 21 |
df = df[benchmark_cols]
|
| 22 |
+
# print(df.head())
|
| 23 |
|
| 24 |
if rank_col: # if there is one col in rank_col, sort by that column and remove NaN values
|
| 25 |
df = df.dropna(subset=benchmark_cols)
|
|
|
|
| 48 |
# df[col] = (df[col]).map('{:.2f}'.format)
|
| 49 |
# else:
|
| 50 |
# df[col] = (df[col]*100).map('{:.2f}'.format)
|
| 51 |
+
if "Chemistry" in col or "C++" in col:
|
| 52 |
+
# if "Chemistry" in col or "C++" in col or "Overall" in col or "Probability" in col or "Logical" in col:
|
| 53 |
df[col] = (df[col]).map('{:.2f}'.format)
|
| 54 |
else:
|
| 55 |
df[col] = (df[col]*100).map('{:.2f}'.format)
|