Update space
Browse files- app.py +116 -10
- src/about.py +17 -0
- src/display/utils.py +22 -0
- src/leaderboard/read_evals.py +130 -7
- src/populate.py +32 -23
app.py
CHANGED
|
@@ -97,8 +97,11 @@ def init_leaderboard(dataframe):
|
|
| 97 |
interactive=False,
|
| 98 |
)
|
| 99 |
|
| 100 |
-
model_result_path = "./src/results/models_2024-10-07-14:50:12.666068.jsonl"
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
def overall_leaderboard(dataframe):
|
| 104 |
if dataframe is None or dataframe.empty:
|
|
@@ -118,6 +121,25 @@ def overall_leaderboard(dataframe):
|
|
| 118 |
|
| 119 |
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
demo = gr.Blocks(css=custom_css)
|
| 122 |
with demo:
|
| 123 |
gr.HTML(TITLE)
|
|
@@ -126,33 +148,117 @@ with demo:
|
|
| 126 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 127 |
|
| 128 |
with gr.TabItem("🏅 Overview", elem_id="llm-benchmark-tab-table", id=0):
|
| 129 |
-
|
| 130 |
-
leaderboard =
|
| 131 |
|
| 132 |
|
| 133 |
with gr.TabItem("🎯 Overall", elem_id="llm-benchmark-tab-table", id=1):
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
with gr.TabItem("🔢 Math", elem_id="math-tab-table", id=2):
|
| 137 |
|
| 138 |
# leaderboard = init_leaderboard(LEADERBOARD_DF)
|
| 139 |
with gr.TabItem("🧮 Algebra", elem_id="algebra_subtab", id=0, elem_classes="subtab"):
|
| 140 |
-
leaderboard = overall_leaderboard(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
with gr.TabItem("📐 Geometry", elem_id="geometry_subtab", id=1, elem_classes="subtab"):
|
| 143 |
-
leaderboard = overall_leaderboard(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
with gr.TabItem("📊 Probability", elem_id="prob_subtab", id=2, elem_classes="subtab"):
|
| 146 |
-
leaderboard = overall_leaderboard(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
|
| 149 |
with gr.TabItem("🧠 Reasoning", elem_id="reasonong-tab-table", id=3):
|
| 150 |
|
| 151 |
with gr.TabItem("🧩 Logical", elem_id="logical_subtab", id=0, elem_classes="subtab"):
|
| 152 |
-
leaderboard = overall_leaderboard(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
with gr.TabItem("🗣️ Social", elem_id="social_subtab", id=1, elem_classes="subtab"):
|
| 155 |
-
leaderboard = overall_leaderboard(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
|
| 158 |
with gr.TabItem("</> Coding", elem_id="coding-tab-table", id=4):
|
|
|
|
| 97 |
interactive=False,
|
| 98 |
)
|
| 99 |
|
| 100 |
+
# model_result_path = "./src/results/models_2024-10-07-14:50:12.666068.jsonl"
|
| 101 |
+
# model_result_path = "./src/results/models_2024-10-08-03:10:26.811832.jsonl"
|
| 102 |
+
model_result_path = "./src/results/models_2024-10-08-03:25:44.801310.jsonl"
|
| 103 |
+
# model_leaderboard_df = get_model_leaderboard_df(model_result_path)
|
| 104 |
+
|
| 105 |
|
| 106 |
def overall_leaderboard(dataframe):
|
| 107 |
if dataframe is None or dataframe.empty:
|
|
|
|
| 121 |
|
| 122 |
|
| 123 |
|
| 124 |
+
def overview_leaderboard(dataframe):
|
| 125 |
+
if dataframe is None or dataframe.empty:
|
| 126 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 127 |
+
|
| 128 |
+
return Leaderboard(
|
| 129 |
+
value=dataframe,
|
| 130 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
| 131 |
+
select_columns=None,
|
| 132 |
+
search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[],
|
| 133 |
+
placeholder="Search by the model name",
|
| 134 |
+
label="Searching"),
|
| 135 |
+
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
| 136 |
+
filter_columns=None,
|
| 137 |
+
interactive=False,
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
demo = gr.Blocks(css=custom_css)
|
| 144 |
with demo:
|
| 145 |
gr.HTML(TITLE)
|
|
|
|
| 148 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 149 |
|
| 150 |
with gr.TabItem("🏅 Overview", elem_id="llm-benchmark-tab-table", id=0):
|
| 151 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
| 152 |
+
# leaderboard = overview_leaderboard(model_leaderboard_df)
|
| 153 |
|
| 154 |
|
| 155 |
with gr.TabItem("🎯 Overall", elem_id="llm-benchmark-tab-table", id=1):
|
| 156 |
+
|
| 157 |
+
leaderboard = overall_leaderboard(
|
| 158 |
+
get_model_leaderboard_df(
|
| 159 |
+
model_result_path,
|
| 160 |
+
benchmark_cols=[
|
| 161 |
+
AutoEvalColumn.rank_overall.name,
|
| 162 |
+
AutoEvalColumn.model.name,
|
| 163 |
+
AutoEvalColumn.score_overall.name,
|
| 164 |
+
AutoEvalColumn.sd_overall.name,
|
| 165 |
+
AutoEvalColumn.license.name,
|
| 166 |
+
AutoEvalColumn.organization.name,
|
| 167 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
| 168 |
+
],
|
| 169 |
+
rank_col=[AutoEvalColumn.rank_overall.name],
|
| 170 |
+
))
|
| 171 |
|
| 172 |
with gr.TabItem("🔢 Math", elem_id="math-tab-table", id=2):
|
| 173 |
|
| 174 |
# leaderboard = init_leaderboard(LEADERBOARD_DF)
|
| 175 |
with gr.TabItem("🧮 Algebra", elem_id="algebra_subtab", id=0, elem_classes="subtab"):
|
| 176 |
+
leaderboard = overall_leaderboard(
|
| 177 |
+
get_model_leaderboard_df(
|
| 178 |
+
model_result_path,
|
| 179 |
+
benchmark_cols=[
|
| 180 |
+
AutoEvalColumn.rank_math_algebra.name,
|
| 181 |
+
AutoEvalColumn.model.name,
|
| 182 |
+
AutoEvalColumn.score_math_algebra.name,
|
| 183 |
+
AutoEvalColumn.sd_math_algebra.name,
|
| 184 |
+
AutoEvalColumn.license.name,
|
| 185 |
+
AutoEvalColumn.organization.name,
|
| 186 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
| 187 |
+
],
|
| 188 |
+
rank_col=[AutoEvalColumn.rank_math_algebra.name],
|
| 189 |
+
)
|
| 190 |
+
)
|
| 191 |
|
| 192 |
with gr.TabItem("📐 Geometry", elem_id="geometry_subtab", id=1, elem_classes="subtab"):
|
| 193 |
+
leaderboard = overall_leaderboard(
|
| 194 |
+
get_model_leaderboard_df(
|
| 195 |
+
model_result_path,
|
| 196 |
+
benchmark_cols=[
|
| 197 |
+
AutoEvalColumn.rank_math_geometry.name,
|
| 198 |
+
AutoEvalColumn.model.name,
|
| 199 |
+
AutoEvalColumn.score_math_geometry.name,
|
| 200 |
+
AutoEvalColumn.sd_math_geometry.name,
|
| 201 |
+
AutoEvalColumn.license.name,
|
| 202 |
+
AutoEvalColumn.organization.name,
|
| 203 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
| 204 |
+
],
|
| 205 |
+
rank_col=[AutoEvalColumn.rank_math_geometry.name],
|
| 206 |
+
)
|
| 207 |
+
)
|
| 208 |
|
| 209 |
with gr.TabItem("📊 Probability", elem_id="prob_subtab", id=2, elem_classes="subtab"):
|
| 210 |
+
leaderboard = overall_leaderboard(
|
| 211 |
+
get_model_leaderboard_df(
|
| 212 |
+
model_result_path,
|
| 213 |
+
benchmark_cols=[
|
| 214 |
+
AutoEvalColumn.rank_math_probability.name,
|
| 215 |
+
AutoEvalColumn.model.name,
|
| 216 |
+
AutoEvalColumn.score_math_probability.name,
|
| 217 |
+
AutoEvalColumn.sd_math_probability.name,
|
| 218 |
+
AutoEvalColumn.license.name,
|
| 219 |
+
AutoEvalColumn.organization.name,
|
| 220 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
| 221 |
+
],
|
| 222 |
+
rank_col=[AutoEvalColumn.rank_math_probability.name],
|
| 223 |
+
)
|
| 224 |
+
)
|
| 225 |
|
| 226 |
|
| 227 |
with gr.TabItem("🧠 Reasoning", elem_id="reasonong-tab-table", id=3):
|
| 228 |
|
| 229 |
with gr.TabItem("🧩 Logical", elem_id="logical_subtab", id=0, elem_classes="subtab"):
|
| 230 |
+
leaderboard = overall_leaderboard(
|
| 231 |
+
get_model_leaderboard_df(
|
| 232 |
+
model_result_path,
|
| 233 |
+
benchmark_cols=[
|
| 234 |
+
AutoEvalColumn.rank_reason_logical.name,
|
| 235 |
+
AutoEvalColumn.model.name,
|
| 236 |
+
AutoEvalColumn.score_reason_logical.name,
|
| 237 |
+
AutoEvalColumn.sd_reason_logical.name,
|
| 238 |
+
AutoEvalColumn.license.name,
|
| 239 |
+
AutoEvalColumn.organization.name,
|
| 240 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
| 241 |
+
],
|
| 242 |
+
rank_col=[AutoEvalColumn.rank_reason_logical.name],
|
| 243 |
+
)
|
| 244 |
+
)
|
| 245 |
|
| 246 |
with gr.TabItem("🗣️ Social", elem_id="social_subtab", id=1, elem_classes="subtab"):
|
| 247 |
+
leaderboard = overall_leaderboard(
|
| 248 |
+
get_model_leaderboard_df(
|
| 249 |
+
model_result_path,
|
| 250 |
+
benchmark_cols=[
|
| 251 |
+
AutoEvalColumn.rank_reason_social.name,
|
| 252 |
+
AutoEvalColumn.model.name,
|
| 253 |
+
AutoEvalColumn.score_reason_social.name,
|
| 254 |
+
AutoEvalColumn.sd_reason_social.name,
|
| 255 |
+
AutoEvalColumn.license.name,
|
| 256 |
+
AutoEvalColumn.organization.name,
|
| 257 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
| 258 |
+
],
|
| 259 |
+
rank_col=[AutoEvalColumn.rank_reason_social.name],
|
| 260 |
+
)
|
| 261 |
+
)
|
| 262 |
|
| 263 |
|
| 264 |
with gr.TabItem("</> Coding", elem_id="coding-tab-table", id=4):
|
src/about.py
CHANGED
|
@@ -1,6 +1,23 @@
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
@dataclass
|
| 5 |
class Domain:
|
| 6 |
dimension: str
|
|
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
| 3 |
|
| 4 |
+
|
| 5 |
+
# @dataclass
|
| 6 |
+
# class Ranking:
|
| 7 |
+
# dimension: str
|
| 8 |
+
# metric: str
|
| 9 |
+
# col_name: str
|
| 10 |
+
|
| 11 |
+
# class Rankings(Enum):
|
| 12 |
+
# # dimension_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 13 |
+
# rank0 = Ranking("overall", "Avg Score", "Overall")
|
| 14 |
+
# rank1 = Ranking("math_algebra", "Avg Score", "Math (Algebra)")
|
| 15 |
+
# rank2 = Ranking("math_geometry", "Avg Score", "Math (Geometry)")
|
| 16 |
+
# rank3 = Ranking("math_prob", "Avg Score", "Math (Probability)")
|
| 17 |
+
# rank4 = Ranking("reason_logical", "Avg Score", "Logical Reasoning")
|
| 18 |
+
# rank5 = Ranking("reason_social", "Avg Score", "Social Reasoning")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
@dataclass
|
| 22 |
class Domain:
|
| 23 |
dimension: str
|
src/display/utils.py
CHANGED
|
@@ -63,6 +63,28 @@ auto_eval_column_dict.append(["score", ColumnContent, field(default_factory=lamb
|
|
| 63 |
auto_eval_column_dict.append(["score_sd", ColumnContent, field(default_factory=lambda: ColumnContent("Score SD", "number", True))])
|
| 64 |
auto_eval_column_dict.append(["rank", ColumnContent, field(default_factory=lambda: ColumnContent("Rank", "number", True))])
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
for task in Tasks:
|
| 68 |
auto_eval_column_dict.append([task.name, ColumnContent, field(default_factory=lambda: ColumnContent(task.value.col_name, "number", True))])
|
|
|
|
| 63 |
auto_eval_column_dict.append(["score_sd", ColumnContent, field(default_factory=lambda: ColumnContent("Score SD", "number", True))])
|
| 64 |
auto_eval_column_dict.append(["rank", ColumnContent, field(default_factory=lambda: ColumnContent("Rank", "number", True))])
|
| 65 |
|
| 66 |
+
# fine-graine dimensions
|
| 67 |
+
auto_eval_column_dict.append(["score_overall", ColumnContent, field(default_factory=lambda: ColumnContent("Overall", "number", True))])
|
| 68 |
+
auto_eval_column_dict.append(["score_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("Math (Algebra)", "number", True))])
|
| 69 |
+
auto_eval_column_dict.append(["score_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("Math (Geometry)", "number", True))])
|
| 70 |
+
auto_eval_column_dict.append(["score_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("Math (Probability)", "number", True))])
|
| 71 |
+
auto_eval_column_dict.append(["score_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("Logical Reasoning", "number", True))])
|
| 72 |
+
auto_eval_column_dict.append(["score_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("Social Reasoning", "number", True))])
|
| 73 |
+
|
| 74 |
+
auto_eval_column_dict.append(["sd_overall", ColumnContent, field(default_factory=lambda: ColumnContent("SD Overall", "number", True))])
|
| 75 |
+
auto_eval_column_dict.append(["sd_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("SD Math (Algebra)", "number", True))])
|
| 76 |
+
auto_eval_column_dict.append(["sd_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("SD Math (Geometry)", "number", True))])
|
| 77 |
+
auto_eval_column_dict.append(["sd_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("SD Math (Probability)", "number", True))])
|
| 78 |
+
auto_eval_column_dict.append(["sd_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("SD Logical Reasoning", "number", True))])
|
| 79 |
+
auto_eval_column_dict.append(["sd_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("SD Social Reasoning", "number", True))])
|
| 80 |
+
|
| 81 |
+
auto_eval_column_dict.append(["rank_overall", ColumnContent, field(default_factory=lambda: ColumnContent("Rank Overall", "number", True))])
|
| 82 |
+
auto_eval_column_dict.append(["rank_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("Rank Math (Algebra)", "number", True))])
|
| 83 |
+
auto_eval_column_dict.append(["rank_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("Rank Math (Geometry)", "number", True))])
|
| 84 |
+
auto_eval_column_dict.append(["rank_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("Rank Math (Probability)", "number", True))])
|
| 85 |
+
auto_eval_column_dict.append(["rank_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("Rank Logical Reasoning", "number", True))])
|
| 86 |
+
auto_eval_column_dict.append(["rank_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("Rank Social Reasoning", "number", True))])
|
| 87 |
+
|
| 88 |
|
| 89 |
for task in Tasks:
|
| 90 |
auto_eval_column_dict.append([task.name, ColumnContent, field(default_factory=lambda: ColumnContent(task.value.col_name, "number", True))])
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -11,14 +11,10 @@ from src.display.formatting import make_clickable_model
|
|
| 11 |
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, Domains
|
| 12 |
from src.submission.check_validity import is_model_on_hub
|
| 13 |
|
| 14 |
-
# @dataclass
|
| 15 |
-
# class RankResult:
|
| 16 |
-
|
| 17 |
-
|
| 18 |
|
| 19 |
@dataclass
|
| 20 |
-
class
|
| 21 |
-
"""Represents one
|
| 22 |
"""
|
| 23 |
eval_name: str
|
| 24 |
full_model: str
|
|
@@ -74,7 +70,7 @@ class ModelResult:
|
|
| 74 |
|
| 75 |
# AutoEvalColumn.precision.name: self.precision.value.name,
|
| 76 |
# AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 77 |
-
# AutoEvalColumn.model_type_symbol.name
|
| 78 |
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 79 |
# AutoEvalColumn.architecture.name: self.architecture,
|
| 80 |
# AutoEvalColumn.revision.name: self.revision,
|
|
@@ -83,6 +79,116 @@ class ModelResult:
|
|
| 83 |
# AutoEvalColumn.params.name: self.num_params,
|
| 84 |
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 85 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
# for task in Tasks:
|
| 88 |
# data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
|
@@ -306,7 +412,23 @@ def get_raw_model_results(results_path: str) -> list[EvalResult]:
|
|
| 306 |
# full_model='OpenAI/ChatGPT-4o-latest (2024-09-03)',
|
| 307 |
# org='OpenAI', model='ChatGPT-4o-latest (2024-09-03)',
|
| 308 |
# results={'overall': None}, license='Proprietary', knowledge_cutoff='2023/10')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
|
|
|
|
|
|
|
|
|
| 310 |
eval_name = eval_result.eval_name
|
| 311 |
eval_results[eval_name] = eval_result
|
| 312 |
|
|
@@ -319,6 +441,7 @@ def get_raw_model_results(results_path: str) -> list[EvalResult]:
|
|
| 319 |
results = []
|
| 320 |
for v in eval_results.values():
|
| 321 |
# print(v.to_dict())
|
|
|
|
| 322 |
# {'eval_name': 'OpenAI_ChatGPT-4o-latest (2024-09-03)',
|
| 323 |
# 'Model': '<a target="_blank" href="https://huggingface.co/OpenAI/ChatGPT-4o-latest (2024-09-03)"
|
| 324 |
# style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">OpenAI/ChatGPT-4o-latest (2024-09-03)</a>',
|
|
|
|
| 11 |
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, Domains
|
| 12 |
from src.submission.check_validity import is_model_on_hub
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
@dataclass
|
| 16 |
+
class RankResult:
|
| 17 |
+
"""Represents one the overall ranking table
|
| 18 |
"""
|
| 19 |
eval_name: str
|
| 20 |
full_model: str
|
|
|
|
| 70 |
|
| 71 |
# AutoEvalColumn.precision.name: self.precision.value.name,
|
| 72 |
# AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 73 |
+
# AutoEvalColumn.model_type_symbol.name
|
| 74 |
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 75 |
# AutoEvalColumn.architecture.name: self.architecture,
|
| 76 |
# AutoEvalColumn.revision.name: self.revision,
|
|
|
|
| 79 |
# AutoEvalColumn.params.name: self.num_params,
|
| 80 |
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 81 |
}
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
@dataclass
|
| 86 |
+
class ModelResult:
|
| 87 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
| 88 |
+
"""
|
| 89 |
+
eval_name: str
|
| 90 |
+
full_model: str
|
| 91 |
+
org: str
|
| 92 |
+
model: str
|
| 93 |
+
results: dict
|
| 94 |
+
license: str = "?"
|
| 95 |
+
knowledge_cutoff: str = ""
|
| 96 |
+
|
| 97 |
+
@classmethod
|
| 98 |
+
def init_from_json_dict(self, data):
|
| 99 |
+
|
| 100 |
+
config = data.get("config")
|
| 101 |
+
# Get model and org
|
| 102 |
+
model = config.get("model_name")
|
| 103 |
+
org = config.get("organization")
|
| 104 |
+
license = config.get("license")
|
| 105 |
+
knowledge_cutoff = config.get("knowledge_cutoff")
|
| 106 |
+
|
| 107 |
+
model_results = data.get("results")
|
| 108 |
+
new_results = {}
|
| 109 |
+
for k, v in model_results.items():
|
| 110 |
+
new_v = {}
|
| 111 |
+
for kk, vv in v.items():
|
| 112 |
+
if vv == 'N/A':
|
| 113 |
+
new_v[kk] = None
|
| 114 |
+
else:
|
| 115 |
+
new_v[kk] = vv
|
| 116 |
+
|
| 117 |
+
new_results[k] = new_v
|
| 118 |
+
|
| 119 |
+
# Extract results available in this file (some results are split in several files)
|
| 120 |
+
# results = {}
|
| 121 |
+
# for domain in Domains:
|
| 122 |
+
# domain = domain.value
|
| 123 |
+
# results[domain.dimension] = model_results.get(domain.dimension).get(domain.metric, None)
|
| 124 |
+
|
| 125 |
+
return self(
|
| 126 |
+
eval_name=f"{org}_{model}",
|
| 127 |
+
full_model=f"{org}/{model}",
|
| 128 |
+
org=org,
|
| 129 |
+
model=model,
|
| 130 |
+
results=new_results,
|
| 131 |
+
license=license,
|
| 132 |
+
knowledge_cutoff=knowledge_cutoff
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
def to_dict(self):
|
| 136 |
+
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 137 |
+
|
| 138 |
+
data_dict = {
|
| 139 |
+
# "eval_name": self.eval_name, # not a column, just a save name,
|
| 140 |
+
# AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 141 |
+
# AutoEvalColumn.rank.name: None, # placeholder for the rank
|
| 142 |
+
AutoEvalColumn.model.name: self.model,
|
| 143 |
+
# AutoEvalColumn.score.name: self.results[Domains.dim0.value.dimension],
|
| 144 |
+
# AutoEvalColumn.score_sd.name: None, # placeholder for the score sd
|
| 145 |
+
|
| 146 |
+
# AutoEvalColumn.score_overall.name: float(self.results.get("OVERALL").get("Average Score", None)),
|
| 147 |
+
# AutoEvalColumn.score_math_algebra.name: float(self.results.get("Algebra").get("Average Score", None)),
|
| 148 |
+
# AutoEvalColumn.score_math_geometry.name: float(self.results.get("Geometry").get("Average Score", None)),
|
| 149 |
+
# AutoEvalColumn.score_math_probability.name: float(self.results.get("Probability").get("Average Score", None)),
|
| 150 |
+
# AutoEvalColumn.score_reason_logical.name: float(self.results.get("Logical").get("Average Score", None)),
|
| 151 |
+
# AutoEvalColumn.score_reason_social.name: float(self.results.get("Social").get("Average Score", None)),
|
| 152 |
+
|
| 153 |
+
# AutoEvalColumn.sd_overall.name: float(self.results.get("OVERALL").get("Standard Deviation", None)),
|
| 154 |
+
# AutoEvalColumn.sd_math_algebra.name: float(self.results.get("Algebra").get("Standard Deviation", None)),
|
| 155 |
+
# AutoEvalColumn.sd_math_geometry.name: float(self.results.get("Geometry").get("Standard Deviation", None)),
|
| 156 |
+
# AutoEvalColumn.sd_math_probability.name: float(self.results.get("Probability").get("Standard Deviation", None)),
|
| 157 |
+
# AutoEvalColumn.sd_reason_logical.name: float(self.results.get("Logical").get("Standard Deviation", None)),
|
| 158 |
+
# AutoEvalColumn.sd_reason_social.name: float(self.results.get("Social").get("Standard Deviation", None)),
|
| 159 |
+
|
| 160 |
+
# AutoEvalColumn.rank_overall.name: int(self.results.get("OVERALL").get("Rank", None)),
|
| 161 |
+
# AutoEvalColumn.rank_math_algebra.name: int(self.results.get("Algebra").get("Rank", None)),
|
| 162 |
+
# AutoEvalColumn.rank_math_geometry.name: int(self.results.get("Geometry").get("Rank", None)),
|
| 163 |
+
# AutoEvalColumn.rank_math_probability.name: int(self.results.get("Probability").get("Rank", None)),
|
| 164 |
+
# AutoEvalColumn.rank_reason_logical.name: int(self.results.get("Logical").get("Rank", None)),
|
| 165 |
+
# AutoEvalColumn.rank_reason_social.name: int(self.results.get("Social").get("Rank", None)),
|
| 166 |
+
|
| 167 |
+
AutoEvalColumn.score_overall.name: self.results.get("OVERALL").get("Average Score", None),
|
| 168 |
+
AutoEvalColumn.score_math_algebra.name: self.results.get("Algebra").get("Average Score", None),
|
| 169 |
+
AutoEvalColumn.score_math_geometry.name: self.results.get("Geometry").get("Average Score", None),
|
| 170 |
+
AutoEvalColumn.score_math_probability.name: self.results.get("Probability").get("Average Score", None),
|
| 171 |
+
AutoEvalColumn.score_reason_logical.name: self.results.get("Logical").get("Average Score", None),
|
| 172 |
+
AutoEvalColumn.score_reason_social.name: self.results.get("Social").get("Average Score", None),
|
| 173 |
+
|
| 174 |
+
AutoEvalColumn.sd_overall.name: self.results.get("OVERALL").get("Standard Deviation", None),
|
| 175 |
+
AutoEvalColumn.sd_math_algebra.name: self.results.get("Algebra").get("Standard Deviation", None),
|
| 176 |
+
AutoEvalColumn.sd_math_geometry.name: self.results.get("Geometry").get("Standard Deviation", None),
|
| 177 |
+
AutoEvalColumn.sd_math_probability.name: self.results.get("Probability").get("Standard Deviation", None),
|
| 178 |
+
AutoEvalColumn.sd_reason_logical.name: self.results.get("Logical").get("Standard Deviation", None),
|
| 179 |
+
AutoEvalColumn.sd_reason_social.name: self.results.get("Social").get("Standard Deviation", None),
|
| 180 |
+
|
| 181 |
+
AutoEvalColumn.rank_overall.name: self.results.get("OVERALL").get("Rank", None),
|
| 182 |
+
AutoEvalColumn.rank_math_algebra.name: self.results.get("Algebra").get("Rank", None),
|
| 183 |
+
AutoEvalColumn.rank_math_geometry.name: self.results.get("Geometry").get("Rank", None),
|
| 184 |
+
AutoEvalColumn.rank_math_probability.name: self.results.get("Probability").get("Rank", None),
|
| 185 |
+
AutoEvalColumn.rank_reason_logical.name: self.results.get("Logical").get("Rank", None),
|
| 186 |
+
AutoEvalColumn.rank_reason_social.name: self.results.get("Social").get("Rank", None),
|
| 187 |
+
|
| 188 |
+
AutoEvalColumn.license.name: self.license,
|
| 189 |
+
AutoEvalColumn.organization.name: self.org,
|
| 190 |
+
AutoEvalColumn.knowledge_cutoff.name: self.knowledge_cutoff,
|
| 191 |
+
}
|
| 192 |
|
| 193 |
# for task in Tasks:
|
| 194 |
# data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
|
|
|
| 412 |
# full_model='OpenAI/ChatGPT-4o-latest (2024-09-03)',
|
| 413 |
# org='OpenAI', model='ChatGPT-4o-latest (2024-09-03)',
|
| 414 |
# results={'overall': None}, license='Proprietary', knowledge_cutoff='2023/10')
|
| 415 |
+
|
| 416 |
+
# all_num_results = eval_result.results
|
| 417 |
+
|
| 418 |
+
# def get_terminal_values(data):
|
| 419 |
+
# terminal_values = []
|
| 420 |
+
# for key, value in data.items():
|
| 421 |
+
# if isinstance(value, dict):
|
| 422 |
+
# terminal_values.extend(get_terminal_values(value))
|
| 423 |
+
# else:
|
| 424 |
+
# terminal_values.append(value)
|
| 425 |
+
# return terminal_values
|
| 426 |
+
|
| 427 |
+
# all_values = get_terminal_values(all_num_results)
|
| 428 |
|
| 429 |
+
# if 'N/A' in all_values:
|
| 430 |
+
# continue
|
| 431 |
+
|
| 432 |
eval_name = eval_result.eval_name
|
| 433 |
eval_results[eval_name] = eval_result
|
| 434 |
|
|
|
|
| 441 |
results = []
|
| 442 |
for v in eval_results.values():
|
| 443 |
# print(v.to_dict())
|
| 444 |
+
# exit()
|
| 445 |
# {'eval_name': 'OpenAI_ChatGPT-4o-latest (2024-09-03)',
|
| 446 |
# 'Model': '<a target="_blank" href="https://huggingface.co/OpenAI/ChatGPT-4o-latest (2024-09-03)"
|
| 447 |
# style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">OpenAI/ChatGPT-4o-latest (2024-09-03)</a>',
|
src/populate.py
CHANGED
|
@@ -9,44 +9,53 @@ from src.leaderboard.read_evals import get_raw_eval_results, get_raw_model_resul
|
|
| 9 |
|
| 10 |
|
| 11 |
|
| 12 |
-
def get_overview_leaderboard_df(results_path: str) -> pd.DataFrame:
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
| 29 |
|
| 30 |
|
| 31 |
-
def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: list=[], benchmark_cols: list=[]) -> pd.DataFrame:
|
| 32 |
"""Creates a dataframe from all the individual experiment results"""
|
| 33 |
raw_data = get_raw_model_results(results_path)
|
| 34 |
all_data_json = [v.to_dict() for v in raw_data]
|
| 35 |
|
| 36 |
df = pd.DataFrame.from_records(all_data_json)
|
| 37 |
-
|
| 38 |
-
df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
# print(cols) # []
|
| 40 |
# print(df.columns) # ['eval_name', 'Model', 'Hub License', 'Organization', 'Knowledge cutoff', 'Overall']
|
| 41 |
# exit()
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
|
| 48 |
# filter out if any of the benchmarks have not been produced
|
| 49 |
-
|
| 50 |
return df
|
| 51 |
|
| 52 |
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
|
| 12 |
+
# def get_overview_leaderboard_df(results_path: str) -> pd.DataFrame:
|
| 13 |
+
# """Creates a dataframe from all the individual experiment results"""
|
| 14 |
+
# raw_data = get_raw_eval_results(results_path, requests_path)
|
| 15 |
+
# all_data_json = [v.to_dict() for v in raw_data]
|
| 16 |
|
| 17 |
+
# df = pd.DataFrame.from_records(all_data_json)
|
| 18 |
+
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 19 |
+
# for col in cols:
|
| 20 |
+
# if col not in df.columns:
|
| 21 |
+
# df[col] = None
|
| 22 |
+
# else:
|
| 23 |
+
# df[col] = df[col].round(decimals=2)
|
| 24 |
|
| 25 |
+
# # filter out if any of the benchmarks have not been produced
|
| 26 |
+
# df = df[has_no_nan_values(df, benchmark_cols)]
|
| 27 |
+
# return df
|
| 28 |
|
| 29 |
|
| 30 |
|
| 31 |
+
def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: list=[], benchmark_cols: list=[], rank_col: list=[]) -> pd.DataFrame:
|
| 32 |
"""Creates a dataframe from all the individual experiment results"""
|
| 33 |
raw_data = get_raw_model_results(results_path)
|
| 34 |
all_data_json = [v.to_dict() for v in raw_data]
|
| 35 |
|
| 36 |
df = pd.DataFrame.from_records(all_data_json)
|
| 37 |
+
|
| 38 |
+
df = df[benchmark_cols]
|
| 39 |
+
df = df.dropna(subset=benchmark_cols)
|
| 40 |
+
|
| 41 |
+
if rank_col:
|
| 42 |
+
df = df.sort_values(by=[rank_col[0]], ascending=True)
|
| 43 |
+
|
| 44 |
+
# df = df.sort_values(by=[AutoEvalColumn.score.name], ascending=True)
|
| 45 |
+
# df[AutoEvalColumn.rank.name] = df[AutoEvalColumn.score.name].rank(ascending=True, method="min")
|
| 46 |
# print(cols) # []
|
| 47 |
# print(df.columns) # ['eval_name', 'Model', 'Hub License', 'Organization', 'Knowledge cutoff', 'Overall']
|
| 48 |
# exit()
|
| 49 |
+
# only keep the columns that are in the cols list
|
| 50 |
+
|
| 51 |
+
# for col in cols:
|
| 52 |
+
# if col not in df.columns:
|
| 53 |
+
# df[col] = None
|
| 54 |
+
# else:
|
| 55 |
+
# df = df[cols].round(decimals=2)
|
| 56 |
|
| 57 |
# filter out if any of the benchmarks have not been produced
|
| 58 |
+
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 59 |
return df
|
| 60 |
|
| 61 |
|