tsqn's picture
Update app.py
056829f verified
raw
history blame
9.33 kB
"""
Copyright NewGenAI
Code can't be included in commercial app used for monetary gain. No derivative code allowed.
"""
import json
import torch
import gradio as gr
import random
import time
from datetime import datetime
import os
from diffusers.utils import export_to_video
from diffusers import LTXImageToVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from pathlib import Path
from datetime import datetime
from huggingface_hub import hf_hub_download
STATE_FILE = "LTX091_I2V_state.json"
queue = []
def load_state():
if os.path.exists(STATE_FILE):
with open(STATE_FILE, "r") as file:
return json.load(file)
return {}
def save_state(state):
with open(STATE_FILE, "w") as file:
json.dump(state, file)
initial_state = load_state()
def add_to_queue(image, prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed):
task = {
"image": image,
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height,
"width": width,
"num_frames": num_frames,
"num_inference_steps": num_inference_steps,
"fps": fps,
"seed": seed,
}
queue.append(task)
return f"Task added to queue. Current queue length: {len(queue)}"
def clear_queue():
queue.clear()
return "Queue cleared."
def process_queue():
if not queue:
return "Queue is empty."
for i, task in enumerate(queue):
generate_video(**task)
time.sleep(1)
queue.clear()
return "All tasks in the queue have been processed."
def save_ui_state(prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed):
state = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height,
"width": width,
"num_frames": num_frames,
"num_inference_steps": num_inference_steps,
"fps": fps,
"seed": seed,
}
save_state(state)
return "State saved!"
# [Previous model loading code remains the same...]
repo_id = "a-r-r-o-w/LTX-Video-0.9.1-diffusers"
base_path = repo_id
files_to_download = [
"model_index.json",
"scheduler/scheduler_config.json",
"text_encoder/config.json",
"text_encoder/model-00001-of-00004.safetensors",
"text_encoder/model-00002-of-00004.safetensors",
"text_encoder/model-00003-of-00004.safetensors",
"text_encoder/model-00004-of-00004.safetensors",
"text_encoder/model.safetensors.index.json",
"tokenizer/added_tokens.json",
"tokenizer/special_tokens_map.json",
"tokenizer/spiece.model",
"tokenizer/tokenizer_config.json",
"transformer/config.json",
"transformer/diffusion_pytorch_model.safetensors",
"vae/config.json",
"vae/diffusion_pytorch_model.safetensors",
]
os.makedirs(base_path, exist_ok=True)
for file_path in files_to_download:
try:
full_dir = os.path.join(base_path, os.path.dirname(file_path))
os.makedirs(full_dir, exist_ok=True)
downloaded_path = hf_hub_download(
repo_id=repo_id,
filename=file_path,
local_dir=base_path,
)
print(f"Successfully downloaded: {file_path}")
except Exception as e:
print(f"Error downloading {file_path}: {str(e)}")
raise
try:
full_dir = os.path.join(base_path, os.path.dirname(file_path))
os.makedirs(full_dir, exist_ok=True)
downloaded_path = hf_hub_download(
repo_id="Lightricks/LTX-Video",
filename="ltx-video-2b-v0.9.1.safetensors",
local_dir=repo_id,
)
print(f"Successfully downloaded: ltx-video-2b-v0.9.1.safetensors")
except Exception as e:
print(f"Error downloading 0.9.1 model: {str(e)}")
raise
single_file_url = repo_id+"/ltx-video-2b-v0.9.1.safetensors"
text_encoder = T5EncoderModel.from_pretrained(
repo_id, subfolder="text_encoder", torch_dtype=torch.bfloat16
)
tokenizer = T5Tokenizer.from_pretrained(
repo_id, subfolder="tokenizer", torch_dtype=torch.bfloat16
)
pipe = LTXImageToVideoPipeline.from_single_file(
single_file_url,
text_encoder=text_encoder,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
def generate_video(image, prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed):
if seed == 0:
seed = random.randint(0, 999999)
video = pipe(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
generator=torch.Generator(device='cuda').manual_seed(seed),
).frames[0]
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{prompt[:10]}_{timestamp}.mp4"
os.makedirs("output_LTX091_i2v", exist_ok=True)
output_path = f"./output_LTX091_i2v/{filename}"
export_to_video(video, output_path, fps=fps)
return output_path
def randomize_seed():
return random.randint(0, 999999)
with gr.Blocks() as demo:
with gr.Tabs():
with gr.Tab("Generate Video"):
with gr.Row():
input_image = gr.Image(label="Input Image", type="pil")
with gr.Row():
prompt = gr.Textbox(label="Prompt", lines=3, value=initial_state.get("prompt", "A dramatic view of the pyramids at Giza during sunset."))
negative_prompt = gr.Textbox(label="Negative Prompt", lines=3, value=initial_state.get("negative_prompt", "worst quality, blurry, distorted"))
with gr.Row():
height = gr.Slider(label="Height", minimum=240, maximum=1080, step=1, value=initial_state.get("height", 480))
width = gr.Slider(label="Width", minimum=320, maximum=1920, step=1, value=initial_state.get("width", 704))
with gr.Row():
num_frames = gr.Slider(label="Number of Frames", minimum=1, maximum=500, step=1, value=initial_state.get("num_frames", 161))
num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=100, step=1, value=initial_state.get("num_inference_steps", 50))
with gr.Row():
fps = gr.Slider(label="FPS", minimum=1, maximum=60, step=1, value=initial_state.get("fps", 24))
seed = gr.Number(label="Seed", value=initial_state.get("seed", 0))
random_seed_button = gr.Button("Randomize Seed")
output_video = gr.Video(label="Generated Video", show_label=True)
generate_button = gr.Button("Generate Video")
save_state_button = gr.Button("Save State")
random_seed_button.click(lambda: random.randint(0, 999999), outputs=seed)
generate_button.click(
generate_video,
inputs=[input_image, prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed],
outputs=output_video
)
save_state_button.click(
save_ui_state,
inputs=[prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed],
outputs=gr.Text(label="State Status")
)
with gr.Tab("Batch Processing"):
with gr.Row():
batch_input_image = gr.Image(label="Input Image", type="pil")
with gr.Row():
batch_prompt = gr.Textbox(label="Prompt", lines=3, value="A batch of videos depicting different landscapes.")
batch_negative_prompt = gr.Textbox(label="Negative Prompt", lines=3, value="low quality, inconsistent, jittery")
with gr.Row():
batch_height = gr.Slider(label="Height", minimum=240, maximum=1080, step=1, value=480)
batch_width = gr.Slider(label="Width", minimum=320, maximum=1920, step=1, value=704)
with gr.Row():
batch_num_frames = gr.Slider(label="Number of Frames", minimum=1, maximum=500, step=1, value=161)
batch_num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=100, step=1, value=50)
with gr.Row():
batch_fps = gr.Slider(label="FPS", minimum=1, maximum=60, step=1, value=24)
batch_seed = gr.Number(label="Seed", value=0)
random_seed_batch_button = gr.Button("Randomize Seed")
add_to_queue_button = gr.Button("Add to Queue")
clear_queue_button = gr.Button("Clear Queue")
process_queue_button = gr.Button("Process Queue")
queue_status = gr.Text(label="Queue Status")
random_seed_batch_button.click(lambda: random.randint(0, 999999), outputs=batch_seed)
add_to_queue_button.click(
add_to_queue,
inputs=[batch_input_image, batch_prompt, batch_negative_prompt, batch_height, batch_width, batch_num_frames, batch_num_inference_steps, batch_fps, batch_seed],
outputs=queue_status
)
clear_queue_button.click(clear_queue, outputs=queue_status)
process_queue_button.click(process_queue, outputs=queue_status)
demo.launch()