Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -39,7 +39,7 @@ import utils
|
|
| 39 |
#from huggingface_hub import hf_hub_download, snapshot_download
|
| 40 |
import gc
|
| 41 |
|
| 42 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 43 |
|
| 44 |
#hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
|
| 45 |
#snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
|
|
@@ -65,14 +65,14 @@ pipe.enable_model_cpu_offload()
|
|
| 65 |
pipe.vae.enable_tiling()
|
| 66 |
pipe.vae.enable_slicing()
|
| 67 |
|
| 68 |
-
i2v_transformer = CogVideoXTransformer3DModel.from_pretrained(
|
| 69 |
-
|
| 70 |
-
)
|
| 71 |
-
i2v_text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5B-I2V", subfolder="text_encoder", torch_dtype=torch.bfloat16)
|
| 72 |
-
i2v_vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-5B-I2V", subfolder="vae", torch_dtype=torch.bfloat16)
|
| 73 |
|
| 74 |
-
quantize_(i2v_transformer, quantization())
|
| 75 |
-
quantize_(i2v_text_encoder, quantization())
|
| 76 |
# quantize_(i2v_vae, quantization())
|
| 77 |
|
| 78 |
# pipe.transformer.to(memory_format=torch.channels_last)
|
|
@@ -100,78 +100,78 @@ Video descriptions must have the same num of words as examples below. Extra word
|
|
| 100 |
"""
|
| 101 |
|
| 102 |
|
| 103 |
-
def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)):
|
| 104 |
-
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
|
| 112 |
|
| 113 |
-
def get_video_dimensions(input_video_path):
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
|
| 118 |
|
| 119 |
-
def center_crop_resize(input_video_path, target_width=720, target_height=480):
|
| 120 |
-
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
|
| 160 |
-
|
| 161 |
|
| 162 |
-
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
|
| 172 |
-
|
| 173 |
|
| 174 |
-
|
| 175 |
|
| 176 |
|
| 177 |
# def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
|
@@ -226,9 +226,9 @@ def center_crop_resize(input_video_path, target_width=720, target_height=480):
|
|
| 226 |
|
| 227 |
def infer(
|
| 228 |
prompt: str,
|
| 229 |
-
image_input: str,
|
| 230 |
-
video_input: str,
|
| 231 |
-
video_strenght: float,
|
| 232 |
num_inference_steps: int,
|
| 233 |
guidance_scale: float,
|
| 234 |
seed: int = -1,
|
|
@@ -237,76 +237,76 @@ def infer(
|
|
| 237 |
if seed == -1:
|
| 238 |
seed = random.randint(0, 2**8 - 1)
|
| 239 |
|
| 240 |
-
if video_input is not None:
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
elif image_input is not None:
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
else:
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
return (video_pt, seed)
|
| 311 |
|
| 312 |
|
|
@@ -362,13 +362,13 @@ with gr.Blocks() as demo:
|
|
| 362 |
""")
|
| 363 |
with gr.Row():
|
| 364 |
with gr.Column():
|
| 365 |
-
with gr.Accordion("I2V: Image Input (cannot be used simultaneously with video input)", open=False):
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
with gr.Accordion("V2V: Video Input (cannot be used simultaneously with image input)", open=False):
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
|
| 373 |
|
| 374 |
# with gr.Row():
|
|
@@ -465,9 +465,9 @@ with gr.Blocks() as demo:
|
|
| 465 |
@spaces.GPU(duration=120)
|
| 466 |
def generate(
|
| 467 |
prompt,
|
| 468 |
-
image_input,
|
| 469 |
-
video_input,
|
| 470 |
-
video_strength,
|
| 471 |
seed_value,
|
| 472 |
# scale_status,
|
| 473 |
# rife_status,
|
|
@@ -475,10 +475,10 @@ with gr.Blocks() as demo:
|
|
| 475 |
):
|
| 476 |
latents, seed = infer(
|
| 477 |
prompt,
|
| 478 |
-
image_input,
|
| 479 |
-
video_input,
|
| 480 |
-
video_strength,
|
| 481 |
-
num_inference_steps=
|
| 482 |
guidance_scale=7.0, # NOT Changed
|
| 483 |
seed=seed_value,
|
| 484 |
progress=progress,
|
|
@@ -511,13 +511,14 @@ with gr.Blocks() as demo:
|
|
| 511 |
|
| 512 |
generate_button.click(
|
| 513 |
generate,
|
| 514 |
-
inputs=[prompt,
|
|
|
|
| 515 |
# inputs=[prompt, image_input, video_input, strength, seed_param, enable_scale, enable_rife],
|
| 516 |
outputs=[video_output, download_video_button, download_gif_button, seed_text],
|
| 517 |
)
|
| 518 |
|
| 519 |
# enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
|
| 520 |
-
video_input.upload(resize_if_unfit, inputs=[video_input], outputs=[video_input])
|
| 521 |
|
| 522 |
if __name__ == "__main__":
|
| 523 |
utils.install_packages()
|
|
|
|
| 39 |
#from huggingface_hub import hf_hub_download, snapshot_download
|
| 40 |
import gc
|
| 41 |
|
| 42 |
+
#device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 43 |
|
| 44 |
#hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
|
| 45 |
#snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
|
|
|
|
| 65 |
pipe.vae.enable_tiling()
|
| 66 |
pipe.vae.enable_slicing()
|
| 67 |
|
| 68 |
+
# i2v_transformer = CogVideoXTransformer3DModel.from_pretrained(
|
| 69 |
+
# "THUDM/CogVideoX-5B-I2V", subfolder="transformer", torch_dtype=torch.bfloat16
|
| 70 |
+
# )
|
| 71 |
+
# i2v_text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5B-I2V", subfolder="text_encoder", torch_dtype=torch.bfloat16)
|
| 72 |
+
# i2v_vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-5B-I2V", subfolder="vae", torch_dtype=torch.bfloat16)
|
| 73 |
|
| 74 |
+
# quantize_(i2v_transformer, quantization())
|
| 75 |
+
# quantize_(i2v_text_encoder, quantization())
|
| 76 |
# quantize_(i2v_vae, quantization())
|
| 77 |
|
| 78 |
# pipe.transformer.to(memory_format=torch.channels_last)
|
|
|
|
| 100 |
"""
|
| 101 |
|
| 102 |
|
| 103 |
+
# def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)):
|
| 104 |
+
# width, height = get_video_dimensions(input_video)
|
| 105 |
|
| 106 |
+
# if width == 720 and height == 480:
|
| 107 |
+
# processed_video = input_video
|
| 108 |
+
# else:
|
| 109 |
+
# processed_video = center_crop_resize(input_video)
|
| 110 |
+
# return processed_video
|
| 111 |
|
| 112 |
|
| 113 |
+
# def get_video_dimensions(input_video_path):
|
| 114 |
+
# reader = imageio_ffmpeg.read_frames(input_video_path)
|
| 115 |
+
# metadata = next(reader)
|
| 116 |
+
# return metadata["size"]
|
| 117 |
|
| 118 |
|
| 119 |
+
# def center_crop_resize(input_video_path, target_width=720, target_height=480):
|
| 120 |
+
# cap = cv2.VideoCapture(input_video_path)
|
| 121 |
|
| 122 |
+
# orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 123 |
+
# orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 124 |
+
# orig_fps = cap.get(cv2.CAP_PROP_FPS)
|
| 125 |
+
# total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 126 |
|
| 127 |
+
# width_factor = target_width / orig_width
|
| 128 |
+
# height_factor = target_height / orig_height
|
| 129 |
+
# resize_factor = max(width_factor, height_factor)
|
| 130 |
|
| 131 |
+
# inter_width = int(orig_width * resize_factor)
|
| 132 |
+
# inter_height = int(orig_height * resize_factor)
|
| 133 |
|
| 134 |
+
# target_fps = 8
|
| 135 |
+
# ideal_skip = max(0, math.ceil(orig_fps / target_fps) - 1)
|
| 136 |
+
# skip = min(5, ideal_skip) # Cap at 5
|
| 137 |
|
| 138 |
+
# while (total_frames / (skip + 1)) < 49 and skip > 0:
|
| 139 |
+
# skip -= 1
|
| 140 |
|
| 141 |
+
# processed_frames = []
|
| 142 |
+
# frame_count = 0
|
| 143 |
+
# total_read = 0
|
| 144 |
|
| 145 |
+
# while frame_count < 49 and total_read < total_frames:
|
| 146 |
+
# ret, frame = cap.read()
|
| 147 |
+
# if not ret:
|
| 148 |
+
# break
|
| 149 |
|
| 150 |
+
# if total_read % (skip + 1) == 0:
|
| 151 |
+
# resized = cv2.resize(frame, (inter_width, inter_height), interpolation=cv2.INTER_AREA)
|
| 152 |
|
| 153 |
+
# start_x = (inter_width - target_width) // 2
|
| 154 |
+
# start_y = (inter_height - target_height) // 2
|
| 155 |
+
# cropped = resized[start_y : start_y + target_height, start_x : start_x + target_width]
|
| 156 |
|
| 157 |
+
# processed_frames.append(cropped)
|
| 158 |
+
# frame_count += 1
|
| 159 |
|
| 160 |
+
# total_read += 1
|
| 161 |
|
| 162 |
+
# cap.release()
|
| 163 |
|
| 164 |
+
# with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
|
| 165 |
+
# temp_video_path = temp_file.name
|
| 166 |
+
# fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 167 |
+
# out = cv2.VideoWriter(temp_video_path, fourcc, target_fps, (target_width, target_height))
|
| 168 |
|
| 169 |
+
# for frame in processed_frames:
|
| 170 |
+
# out.write(frame)
|
| 171 |
|
| 172 |
+
# out.release()
|
| 173 |
|
| 174 |
+
# return temp_video_path
|
| 175 |
|
| 176 |
|
| 177 |
# def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
|
|
|
| 226 |
|
| 227 |
def infer(
|
| 228 |
prompt: str,
|
| 229 |
+
# image_input: str,
|
| 230 |
+
# video_input: str,
|
| 231 |
+
# video_strenght: float,
|
| 232 |
num_inference_steps: int,
|
| 233 |
guidance_scale: float,
|
| 234 |
seed: int = -1,
|
|
|
|
| 237 |
if seed == -1:
|
| 238 |
seed = random.randint(0, 2**8 - 1)
|
| 239 |
|
| 240 |
+
# if video_input is not None:
|
| 241 |
+
# video = load_video(video_input)[:49] # Limit to 49 frames
|
| 242 |
+
# pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained(
|
| 243 |
+
# "THUDM/CogVideoX-5B",
|
| 244 |
+
# transformer=transformer,
|
| 245 |
+
# vae=vae,
|
| 246 |
+
# scheduler=pipe.scheduler,
|
| 247 |
+
# tokenizer=pipe.tokenizer,
|
| 248 |
+
# text_encoder=text_encoder,
|
| 249 |
+
# torch_dtype=torch.bfloat16,
|
| 250 |
+
# ).to(device)
|
| 251 |
|
| 252 |
+
# # pipe_video.enable_model_cpu_offload()
|
| 253 |
+
# pipe_video.vae.enable_tiling()
|
| 254 |
+
# pipe_video.vae.enable_slicing()
|
| 255 |
+
# video_pt = pipe_video(
|
| 256 |
+
# video=video,
|
| 257 |
+
# prompt=prompt,
|
| 258 |
+
# num_inference_steps=num_inference_steps,
|
| 259 |
+
# num_videos_per_prompt=1,
|
| 260 |
+
# strength=video_strenght,
|
| 261 |
+
# use_dynamic_cfg=True,
|
| 262 |
+
# output_type="pt",
|
| 263 |
+
# guidance_scale=guidance_scale,
|
| 264 |
+
# generator=torch.Generator(device="cpu").manual_seed(seed),
|
| 265 |
+
# ).frames
|
| 266 |
+
# pipe_video.to("cpu")
|
| 267 |
+
# del pipe_video
|
| 268 |
+
# gc.collect()
|
| 269 |
+
# torch.cuda.empty_cache()
|
| 270 |
+
# elif image_input is not None:
|
| 271 |
+
# pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
|
| 272 |
+
# "THUDM/CogVideoX-5B-I2V",
|
| 273 |
+
# transformer=i2v_transformer,
|
| 274 |
+
# vae=i2v_vae,
|
| 275 |
+
# scheduler=pipe.scheduler,
|
| 276 |
+
# tokenizer=pipe.tokenizer,
|
| 277 |
+
# text_encoder=i2v_text_encoder,
|
| 278 |
+
# torch_dtype=torch.bfloat16,
|
| 279 |
+
# ).to(device)
|
| 280 |
+
# image_input = Image.fromarray(image_input).resize(size=(720, 480)) # Convert to PIL
|
| 281 |
+
# image = load_image(image_input)
|
| 282 |
+
# video_pt = pipe_image(
|
| 283 |
+
# image=image,
|
| 284 |
+
# prompt=prompt,
|
| 285 |
+
# num_inference_steps=num_inference_steps,
|
| 286 |
+
# num_videos_per_prompt=1,
|
| 287 |
+
# use_dynamic_cfg=True,
|
| 288 |
+
# output_type="pt",
|
| 289 |
+
# guidance_scale=guidance_scale,
|
| 290 |
+
# generator=torch.Generator(device="cpu").manual_seed(seed),
|
| 291 |
+
# ).frames
|
| 292 |
+
# pipe_image.to("cpu")
|
| 293 |
+
# del pipe_image
|
| 294 |
+
# gc.collect()
|
| 295 |
+
# torch.cuda.empty_cache()
|
| 296 |
+
# else:
|
| 297 |
+
pipe.to("cpu")
|
| 298 |
+
video_pt = pipe(
|
| 299 |
+
prompt=prompt,
|
| 300 |
+
num_videos_per_prompt=1,
|
| 301 |
+
num_inference_steps=num_inference_steps,
|
| 302 |
+
num_frames=16,
|
| 303 |
+
use_dynamic_cfg=True,
|
| 304 |
+
output_type="pt",
|
| 305 |
+
guidance_scale=guidance_scale,
|
| 306 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
| 307 |
+
).frames
|
| 308 |
+
pipe.to("cpu")
|
| 309 |
+
gc.collect()
|
| 310 |
return (video_pt, seed)
|
| 311 |
|
| 312 |
|
|
|
|
| 362 |
""")
|
| 363 |
with gr.Row():
|
| 364 |
with gr.Column():
|
| 365 |
+
# with gr.Accordion("I2V: Image Input (cannot be used simultaneously with video input)", open=False):
|
| 366 |
+
# image_input = gr.Image(label="Input Image (will be cropped to 720 * 480)")
|
| 367 |
+
# examples_component_images = gr.Examples(examples_images, inputs=[image_input], cache_examples=False)
|
| 368 |
+
# with gr.Accordion("V2V: Video Input (cannot be used simultaneously with image input)", open=False):
|
| 369 |
+
# video_input = gr.Video(label="Input Video (will be cropped to 49 frames, 6 seconds at 8fps)")
|
| 370 |
+
# strength = gr.Slider(0.1, 1.0, value=0.8, step=0.01, label="Strength")
|
| 371 |
+
# examples_component_videos = gr.Examples(examples_videos, inputs=[video_input], cache_examples=False)
|
| 372 |
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
|
| 373 |
|
| 374 |
# with gr.Row():
|
|
|
|
| 465 |
@spaces.GPU(duration=120)
|
| 466 |
def generate(
|
| 467 |
prompt,
|
| 468 |
+
# image_input,
|
| 469 |
+
# video_input,
|
| 470 |
+
# video_strength,
|
| 471 |
seed_value,
|
| 472 |
# scale_status,
|
| 473 |
# rife_status,
|
|
|
|
| 475 |
):
|
| 476 |
latents, seed = infer(
|
| 477 |
prompt,
|
| 478 |
+
# image_input,
|
| 479 |
+
# video_input,
|
| 480 |
+
# video_strength,
|
| 481 |
+
num_inference_steps=50, # NOT Changed
|
| 482 |
guidance_scale=7.0, # NOT Changed
|
| 483 |
seed=seed_value,
|
| 484 |
progress=progress,
|
|
|
|
| 511 |
|
| 512 |
generate_button.click(
|
| 513 |
generate,
|
| 514 |
+
inputs=[prompt, seed_param],
|
| 515 |
+
# inputs=[prompt, image_input, video_input, strength, seed_param],
|
| 516 |
# inputs=[prompt, image_input, video_input, strength, seed_param, enable_scale, enable_rife],
|
| 517 |
outputs=[video_output, download_video_button, download_gif_button, seed_text],
|
| 518 |
)
|
| 519 |
|
| 520 |
# enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
|
| 521 |
+
# video_input.upload(resize_if_unfit, inputs=[video_input], outputs=[video_input])
|
| 522 |
|
| 523 |
if __name__ == "__main__":
|
| 524 |
utils.install_packages()
|