Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -39,7 +39,7 @@ import utils
|
|
39 |
#from huggingface_hub import hf_hub_download, snapshot_download
|
40 |
import gc
|
41 |
|
42 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
|
44 |
#hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
|
45 |
#snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
|
@@ -65,14 +65,14 @@ pipe.enable_model_cpu_offload()
|
|
65 |
pipe.vae.enable_tiling()
|
66 |
pipe.vae.enable_slicing()
|
67 |
|
68 |
-
i2v_transformer = CogVideoXTransformer3DModel.from_pretrained(
|
69 |
-
|
70 |
-
)
|
71 |
-
i2v_text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5B-I2V", subfolder="text_encoder", torch_dtype=torch.bfloat16)
|
72 |
-
i2v_vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-5B-I2V", subfolder="vae", torch_dtype=torch.bfloat16)
|
73 |
|
74 |
-
quantize_(i2v_transformer, quantization())
|
75 |
-
quantize_(i2v_text_encoder, quantization())
|
76 |
# quantize_(i2v_vae, quantization())
|
77 |
|
78 |
# pipe.transformer.to(memory_format=torch.channels_last)
|
@@ -100,78 +100,78 @@ Video descriptions must have the same num of words as examples below. Extra word
|
|
100 |
"""
|
101 |
|
102 |
|
103 |
-
def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)):
|
104 |
-
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
|
112 |
|
113 |
-
def get_video_dimensions(input_video_path):
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
|
118 |
|
119 |
-
def center_crop_resize(input_video_path, target_width=720, target_height=480):
|
120 |
-
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
|
131 |
-
|
132 |
-
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
|
138 |
-
|
139 |
-
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
|
150 |
-
|
151 |
-
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
|
157 |
-
|
158 |
-
|
159 |
|
160 |
-
|
161 |
|
162 |
-
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
|
169 |
-
|
170 |
-
|
171 |
|
172 |
-
|
173 |
|
174 |
-
|
175 |
|
176 |
|
177 |
# def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
@@ -226,9 +226,9 @@ def center_crop_resize(input_video_path, target_width=720, target_height=480):
|
|
226 |
|
227 |
def infer(
|
228 |
prompt: str,
|
229 |
-
image_input: str,
|
230 |
-
video_input: str,
|
231 |
-
video_strenght: float,
|
232 |
num_inference_steps: int,
|
233 |
guidance_scale: float,
|
234 |
seed: int = -1,
|
@@ -237,76 +237,76 @@ def infer(
|
|
237 |
if seed == -1:
|
238 |
seed = random.randint(0, 2**8 - 1)
|
239 |
|
240 |
-
if video_input is not None:
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
elif image_input is not None:
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
else:
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
return (video_pt, seed)
|
311 |
|
312 |
|
@@ -362,13 +362,13 @@ with gr.Blocks() as demo:
|
|
362 |
""")
|
363 |
with gr.Row():
|
364 |
with gr.Column():
|
365 |
-
with gr.Accordion("I2V: Image Input (cannot be used simultaneously with video input)", open=False):
|
366 |
-
|
367 |
-
|
368 |
-
with gr.Accordion("V2V: Video Input (cannot be used simultaneously with image input)", open=False):
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
|
373 |
|
374 |
# with gr.Row():
|
@@ -465,9 +465,9 @@ with gr.Blocks() as demo:
|
|
465 |
@spaces.GPU(duration=120)
|
466 |
def generate(
|
467 |
prompt,
|
468 |
-
image_input,
|
469 |
-
video_input,
|
470 |
-
video_strength,
|
471 |
seed_value,
|
472 |
# scale_status,
|
473 |
# rife_status,
|
@@ -475,10 +475,10 @@ with gr.Blocks() as demo:
|
|
475 |
):
|
476 |
latents, seed = infer(
|
477 |
prompt,
|
478 |
-
image_input,
|
479 |
-
video_input,
|
480 |
-
video_strength,
|
481 |
-
num_inference_steps=
|
482 |
guidance_scale=7.0, # NOT Changed
|
483 |
seed=seed_value,
|
484 |
progress=progress,
|
@@ -511,13 +511,14 @@ with gr.Blocks() as demo:
|
|
511 |
|
512 |
generate_button.click(
|
513 |
generate,
|
514 |
-
inputs=[prompt,
|
|
|
515 |
# inputs=[prompt, image_input, video_input, strength, seed_param, enable_scale, enable_rife],
|
516 |
outputs=[video_output, download_video_button, download_gif_button, seed_text],
|
517 |
)
|
518 |
|
519 |
# enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
|
520 |
-
video_input.upload(resize_if_unfit, inputs=[video_input], outputs=[video_input])
|
521 |
|
522 |
if __name__ == "__main__":
|
523 |
utils.install_packages()
|
|
|
39 |
#from huggingface_hub import hf_hub_download, snapshot_download
|
40 |
import gc
|
41 |
|
42 |
+
#device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
|
44 |
#hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
|
45 |
#snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
|
|
|
65 |
pipe.vae.enable_tiling()
|
66 |
pipe.vae.enable_slicing()
|
67 |
|
68 |
+
# i2v_transformer = CogVideoXTransformer3DModel.from_pretrained(
|
69 |
+
# "THUDM/CogVideoX-5B-I2V", subfolder="transformer", torch_dtype=torch.bfloat16
|
70 |
+
# )
|
71 |
+
# i2v_text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5B-I2V", subfolder="text_encoder", torch_dtype=torch.bfloat16)
|
72 |
+
# i2v_vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-5B-I2V", subfolder="vae", torch_dtype=torch.bfloat16)
|
73 |
|
74 |
+
# quantize_(i2v_transformer, quantization())
|
75 |
+
# quantize_(i2v_text_encoder, quantization())
|
76 |
# quantize_(i2v_vae, quantization())
|
77 |
|
78 |
# pipe.transformer.to(memory_format=torch.channels_last)
|
|
|
100 |
"""
|
101 |
|
102 |
|
103 |
+
# def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)):
|
104 |
+
# width, height = get_video_dimensions(input_video)
|
105 |
|
106 |
+
# if width == 720 and height == 480:
|
107 |
+
# processed_video = input_video
|
108 |
+
# else:
|
109 |
+
# processed_video = center_crop_resize(input_video)
|
110 |
+
# return processed_video
|
111 |
|
112 |
|
113 |
+
# def get_video_dimensions(input_video_path):
|
114 |
+
# reader = imageio_ffmpeg.read_frames(input_video_path)
|
115 |
+
# metadata = next(reader)
|
116 |
+
# return metadata["size"]
|
117 |
|
118 |
|
119 |
+
# def center_crop_resize(input_video_path, target_width=720, target_height=480):
|
120 |
+
# cap = cv2.VideoCapture(input_video_path)
|
121 |
|
122 |
+
# orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
123 |
+
# orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
124 |
+
# orig_fps = cap.get(cv2.CAP_PROP_FPS)
|
125 |
+
# total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
126 |
|
127 |
+
# width_factor = target_width / orig_width
|
128 |
+
# height_factor = target_height / orig_height
|
129 |
+
# resize_factor = max(width_factor, height_factor)
|
130 |
|
131 |
+
# inter_width = int(orig_width * resize_factor)
|
132 |
+
# inter_height = int(orig_height * resize_factor)
|
133 |
|
134 |
+
# target_fps = 8
|
135 |
+
# ideal_skip = max(0, math.ceil(orig_fps / target_fps) - 1)
|
136 |
+
# skip = min(5, ideal_skip) # Cap at 5
|
137 |
|
138 |
+
# while (total_frames / (skip + 1)) < 49 and skip > 0:
|
139 |
+
# skip -= 1
|
140 |
|
141 |
+
# processed_frames = []
|
142 |
+
# frame_count = 0
|
143 |
+
# total_read = 0
|
144 |
|
145 |
+
# while frame_count < 49 and total_read < total_frames:
|
146 |
+
# ret, frame = cap.read()
|
147 |
+
# if not ret:
|
148 |
+
# break
|
149 |
|
150 |
+
# if total_read % (skip + 1) == 0:
|
151 |
+
# resized = cv2.resize(frame, (inter_width, inter_height), interpolation=cv2.INTER_AREA)
|
152 |
|
153 |
+
# start_x = (inter_width - target_width) // 2
|
154 |
+
# start_y = (inter_height - target_height) // 2
|
155 |
+
# cropped = resized[start_y : start_y + target_height, start_x : start_x + target_width]
|
156 |
|
157 |
+
# processed_frames.append(cropped)
|
158 |
+
# frame_count += 1
|
159 |
|
160 |
+
# total_read += 1
|
161 |
|
162 |
+
# cap.release()
|
163 |
|
164 |
+
# with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
|
165 |
+
# temp_video_path = temp_file.name
|
166 |
+
# fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
167 |
+
# out = cv2.VideoWriter(temp_video_path, fourcc, target_fps, (target_width, target_height))
|
168 |
|
169 |
+
# for frame in processed_frames:
|
170 |
+
# out.write(frame)
|
171 |
|
172 |
+
# out.release()
|
173 |
|
174 |
+
# return temp_video_path
|
175 |
|
176 |
|
177 |
# def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
|
|
226 |
|
227 |
def infer(
|
228 |
prompt: str,
|
229 |
+
# image_input: str,
|
230 |
+
# video_input: str,
|
231 |
+
# video_strenght: float,
|
232 |
num_inference_steps: int,
|
233 |
guidance_scale: float,
|
234 |
seed: int = -1,
|
|
|
237 |
if seed == -1:
|
238 |
seed = random.randint(0, 2**8 - 1)
|
239 |
|
240 |
+
# if video_input is not None:
|
241 |
+
# video = load_video(video_input)[:49] # Limit to 49 frames
|
242 |
+
# pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained(
|
243 |
+
# "THUDM/CogVideoX-5B",
|
244 |
+
# transformer=transformer,
|
245 |
+
# vae=vae,
|
246 |
+
# scheduler=pipe.scheduler,
|
247 |
+
# tokenizer=pipe.tokenizer,
|
248 |
+
# text_encoder=text_encoder,
|
249 |
+
# torch_dtype=torch.bfloat16,
|
250 |
+
# ).to(device)
|
251 |
|
252 |
+
# # pipe_video.enable_model_cpu_offload()
|
253 |
+
# pipe_video.vae.enable_tiling()
|
254 |
+
# pipe_video.vae.enable_slicing()
|
255 |
+
# video_pt = pipe_video(
|
256 |
+
# video=video,
|
257 |
+
# prompt=prompt,
|
258 |
+
# num_inference_steps=num_inference_steps,
|
259 |
+
# num_videos_per_prompt=1,
|
260 |
+
# strength=video_strenght,
|
261 |
+
# use_dynamic_cfg=True,
|
262 |
+
# output_type="pt",
|
263 |
+
# guidance_scale=guidance_scale,
|
264 |
+
# generator=torch.Generator(device="cpu").manual_seed(seed),
|
265 |
+
# ).frames
|
266 |
+
# pipe_video.to("cpu")
|
267 |
+
# del pipe_video
|
268 |
+
# gc.collect()
|
269 |
+
# torch.cuda.empty_cache()
|
270 |
+
# elif image_input is not None:
|
271 |
+
# pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
|
272 |
+
# "THUDM/CogVideoX-5B-I2V",
|
273 |
+
# transformer=i2v_transformer,
|
274 |
+
# vae=i2v_vae,
|
275 |
+
# scheduler=pipe.scheduler,
|
276 |
+
# tokenizer=pipe.tokenizer,
|
277 |
+
# text_encoder=i2v_text_encoder,
|
278 |
+
# torch_dtype=torch.bfloat16,
|
279 |
+
# ).to(device)
|
280 |
+
# image_input = Image.fromarray(image_input).resize(size=(720, 480)) # Convert to PIL
|
281 |
+
# image = load_image(image_input)
|
282 |
+
# video_pt = pipe_image(
|
283 |
+
# image=image,
|
284 |
+
# prompt=prompt,
|
285 |
+
# num_inference_steps=num_inference_steps,
|
286 |
+
# num_videos_per_prompt=1,
|
287 |
+
# use_dynamic_cfg=True,
|
288 |
+
# output_type="pt",
|
289 |
+
# guidance_scale=guidance_scale,
|
290 |
+
# generator=torch.Generator(device="cpu").manual_seed(seed),
|
291 |
+
# ).frames
|
292 |
+
# pipe_image.to("cpu")
|
293 |
+
# del pipe_image
|
294 |
+
# gc.collect()
|
295 |
+
# torch.cuda.empty_cache()
|
296 |
+
# else:
|
297 |
+
pipe.to("cpu")
|
298 |
+
video_pt = pipe(
|
299 |
+
prompt=prompt,
|
300 |
+
num_videos_per_prompt=1,
|
301 |
+
num_inference_steps=num_inference_steps,
|
302 |
+
num_frames=16,
|
303 |
+
use_dynamic_cfg=True,
|
304 |
+
output_type="pt",
|
305 |
+
guidance_scale=guidance_scale,
|
306 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
307 |
+
).frames
|
308 |
+
pipe.to("cpu")
|
309 |
+
gc.collect()
|
310 |
return (video_pt, seed)
|
311 |
|
312 |
|
|
|
362 |
""")
|
363 |
with gr.Row():
|
364 |
with gr.Column():
|
365 |
+
# with gr.Accordion("I2V: Image Input (cannot be used simultaneously with video input)", open=False):
|
366 |
+
# image_input = gr.Image(label="Input Image (will be cropped to 720 * 480)")
|
367 |
+
# examples_component_images = gr.Examples(examples_images, inputs=[image_input], cache_examples=False)
|
368 |
+
# with gr.Accordion("V2V: Video Input (cannot be used simultaneously with image input)", open=False):
|
369 |
+
# video_input = gr.Video(label="Input Video (will be cropped to 49 frames, 6 seconds at 8fps)")
|
370 |
+
# strength = gr.Slider(0.1, 1.0, value=0.8, step=0.01, label="Strength")
|
371 |
+
# examples_component_videos = gr.Examples(examples_videos, inputs=[video_input], cache_examples=False)
|
372 |
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
|
373 |
|
374 |
# with gr.Row():
|
|
|
465 |
@spaces.GPU(duration=120)
|
466 |
def generate(
|
467 |
prompt,
|
468 |
+
# image_input,
|
469 |
+
# video_input,
|
470 |
+
# video_strength,
|
471 |
seed_value,
|
472 |
# scale_status,
|
473 |
# rife_status,
|
|
|
475 |
):
|
476 |
latents, seed = infer(
|
477 |
prompt,
|
478 |
+
# image_input,
|
479 |
+
# video_input,
|
480 |
+
# video_strength,
|
481 |
+
num_inference_steps=50, # NOT Changed
|
482 |
guidance_scale=7.0, # NOT Changed
|
483 |
seed=seed_value,
|
484 |
progress=progress,
|
|
|
511 |
|
512 |
generate_button.click(
|
513 |
generate,
|
514 |
+
inputs=[prompt, seed_param],
|
515 |
+
# inputs=[prompt, image_input, video_input, strength, seed_param],
|
516 |
# inputs=[prompt, image_input, video_input, strength, seed_param, enable_scale, enable_rife],
|
517 |
outputs=[video_output, download_video_button, download_gif_button, seed_text],
|
518 |
)
|
519 |
|
520 |
# enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
|
521 |
+
# video_input.upload(resize_if_unfit, inputs=[video_input], outputs=[video_input])
|
522 |
|
523 |
if __name__ == "__main__":
|
524 |
utils.install_packages()
|