Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import os
|
3 |
+
import streamlit as st
|
4 |
+
import sys
|
5 |
+
import urllib
|
6 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
7 |
+
import json
|
8 |
+
import torch
|
9 |
+
|
10 |
+
def generate(tokenizer, model, text, features):
|
11 |
+
generated = tokenizer("<|startoftext|> <|titlestart|>{}<|titleend|>".format(text), return_tensors="pt").input_ids
|
12 |
+
sample_outputs = model.generate(
|
13 |
+
generated, do_sample=True, top_k=50,
|
14 |
+
max_length=300, top_p=0.95, temperature=2.1, num_return_sequences=2
|
15 |
+
)
|
16 |
+
for i, sample_output in enumerate(sample_outputs):
|
17 |
+
decoded = tokenizer.decode(sample_output, skip_special_tokens=True).split(text)[1]
|
18 |
+
st.write(decoded)
|
19 |
+
|
20 |
+
|
21 |
+
def load_model():
|
22 |
+
tokenizer = torch.load('./tokenizer.pt')
|
23 |
+
model = torch.load('./model.pt', map_location=torch.device('cpu'))
|
24 |
+
return tokenizer, model
|
25 |
+
|
26 |
+
|
27 |
+
def main():
|
28 |
+
tokenizer, model = load_model()
|
29 |
+
st.title("YouTube comments generating project")
|
30 |
+
st.header('YouTube comments generator')
|
31 |
+
|
32 |
+
st.sidebar.title("Features")
|
33 |
+
seed = 27834096
|
34 |
+
default_control_features = ["Количество комментариев", "Температура", "Top-p"]
|
35 |
+
|
36 |
+
control_features = default_control_features
|
37 |
+
|
38 |
+
# Insert user-controlled values from sliders into the feature vector.
|
39 |
+
features = {
|
40 |
+
"num": st.sidebar.slider("Количество комментариев", 0, 20, 1, 1),
|
41 |
+
"t": st.sidebar.slider("Температура", 0, 300, 180, 1),
|
42 |
+
"top_p": st.sidebar.slider("Top-p", 0, 100, 95, 5),
|
43 |
+
}
|
44 |
+
|
45 |
+
st.sidebar.title("Note")
|
46 |
+
st.sidebar.write(
|
47 |
+
"""
|
48 |
+
Изменяя значения, можно получить различные выводы модели
|
49 |
+
"""
|
50 |
+
)
|
51 |
+
st.sidebar.write(
|
52 |
+
"""
|
53 |
+
Значение температуры делится на 100
|
54 |
+
"""
|
55 |
+
)
|
56 |
+
st.sidebar.caption(f"Streamlit version `{st.__version__}`")
|
57 |
+
with st.form(key='my_form'):
|
58 |
+
url = st.text_input('Введите url видео на YouTube')
|
59 |
+
st.form_submit_button('Готово!')
|
60 |
+
|
61 |
+
params = {"format": "json", "url": url}
|
62 |
+
base_url = "https://www.youtube.com/oembed"
|
63 |
+
query_string = urllib.parse.urlencode(params)
|
64 |
+
base_url = base_url + "?" + query_string
|
65 |
+
|
66 |
+
with urllib.request.urlopen(base_url) as response:
|
67 |
+
response_text = response.read()
|
68 |
+
data = json.loads(response_text.decode())
|
69 |
+
st.write('Video Title: ' + data['title'])
|
70 |
+
st.video(url)
|
71 |
+
generate(tokenizer, model, data['title'], features)
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
main()
|