Spaces:
Sleeping
Sleeping
first commit
Browse files- app.py +51 -10
- chatgpt.py +99 -0
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# theme = gr.themes.Monochrome(spacing_size=gr.themes.sizes.spacing_md,
|
| 6 |
# radius_size=gr.themes.sizes.radius_sm,
|
|
@@ -16,16 +19,53 @@ from transformers import pipeline
|
|
| 16 |
# df.to_csv('subsectors.csv', index=False)
|
| 17 |
|
| 18 |
df = pd.read_csv('subsectors.csv')
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
def click_button(model, abstract):
|
| 23 |
-
|
| 24 |
-
classifier = pipeline("zero-shot-classification")
|
| 25 |
labels = df['Subsector'].tolist()
|
| 26 |
-
result = classifier(abstract, labels)
|
| 27 |
-
|
| 28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
def on_select(evt: gr.SelectData): # SelectData is a subclass of EventData
|
|
@@ -48,9 +88,10 @@ with gr.Blocks() as startup_genome_demo:
|
|
| 48 |
with gr.Row():
|
| 49 |
btn_get_result = gr.Button("Show classification")
|
| 50 |
with gr.Row():
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
| 54 |
with gr.Tab("Sector definitions"):
|
| 55 |
with gr.Row():
|
| 56 |
with gr.Column(scale=4):
|
|
@@ -66,7 +107,7 @@ with gr.Blocks() as startup_genome_demo:
|
|
| 66 |
with gr.Tab("Logs"):
|
| 67 |
pass
|
| 68 |
|
| 69 |
-
btn_get_result.click(fn=click_button, inputs=[dropdown_model, abstract_description], outputs=[label_result])
|
| 70 |
df_subsectors.select(fn=on_select, outputs=[subsector_name, s1_definition, s1_keywords, does_include, does_not_include])
|
| 71 |
|
| 72 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
from transformers import pipeline
|
| 4 |
+
from openai import OpenAI
|
| 5 |
+
|
| 6 |
+
from chatgpt import MessageChatCompletion
|
| 7 |
|
| 8 |
# theme = gr.themes.Monochrome(spacing_size=gr.themes.sizes.spacing_md,
|
| 9 |
# radius_size=gr.themes.sizes.radius_sm,
|
|
|
|
| 19 |
# df.to_csv('subsectors.csv', index=False)
|
| 20 |
|
| 21 |
df = pd.read_csv('subsectors.csv')
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def build_context(row):
|
| 25 |
+
subsector_name = row['Subsector']
|
| 26 |
+
context = f"Subsector name: {subsector_name}. "
|
| 27 |
+
context += f"{subsector_name} Definition: {row['Definition']}. "
|
| 28 |
+
context += f"{subsector_name} keywords: {row['Keywords']}. "
|
| 29 |
+
context += f"{subsector_name} Does include: {row['Does include']}. "
|
| 30 |
+
context += f"{subsector_name} Does not include: {row['Does not include']}.\n"
|
| 31 |
+
|
| 32 |
+
return context
|
| 33 |
|
| 34 |
|
| 35 |
def click_button(model, abstract):
|
| 36 |
+
|
| 37 |
+
classifier = pipeline("zero-shot-classification", model="sileod/deberta-v3-base-tasksource-nli")
|
| 38 |
labels = df['Subsector'].tolist()
|
| 39 |
+
result = classifier(abstract, labels, multi_label=True)
|
| 40 |
+
# best_x_labels = [label for label in result["labels"]][0:5]
|
| 41 |
+
# df_best = df[df.Subsector.isin(best_x_labels)]
|
| 42 |
+
# contexts = [build_context(row) for _, row in df_best.iterrows()]
|
| 43 |
+
|
| 44 |
+
contexts = [build_context(row) for _, row in df.iterrows()]
|
| 45 |
+
|
| 46 |
+
my_chatgpt = MessageChatCompletion(model='gpt-4')
|
| 47 |
+
|
| 48 |
+
system_message = ('You are a system that will receive an patent abstract and needs to classify in one or more patent subsectors.'
|
| 49 |
+
'You need to consider that each subsector has an name, definition, keywords, Does include and Does not included.'
|
| 50 |
+
'Definition describe the subsector. '
|
| 51 |
+
'The Keywords are important words for that subsector. '
|
| 52 |
+
'Does include are words that can be included.'
|
| 53 |
+
'Does not include are words that can not be in the patent abstract that is been classifying.'
|
| 54 |
+
'nan will be consider as empty.'
|
| 55 |
+
'Your answer will be subsector: the subsector result name and reasoning: The conclusion why you classify in that subsector specifying if has keywords and does include.'
|
| 56 |
+
'Folow the subsectors:'
|
| 57 |
+
f'{contexts}')
|
| 58 |
+
|
| 59 |
+
user_message = f'Classify this patent abstract: {abstract}'
|
| 60 |
+
|
| 61 |
+
my_chatgpt.new_system_message(content=system_message)
|
| 62 |
+
my_chatgpt.new_user_message(content=user_message)
|
| 63 |
+
my_chatgpt.send_message()
|
| 64 |
+
|
| 65 |
+
reasoning = my_chatgpt.get_last_message()
|
| 66 |
+
|
| 67 |
+
return {label: round(prob, 4) for label, prob in zip(result["labels"], result["scores"])}, reasoning
|
| 68 |
+
|
| 69 |
|
| 70 |
|
| 71 |
def on_select(evt: gr.SelectData): # SelectData is a subclass of EventData
|
|
|
|
| 88 |
with gr.Row():
|
| 89 |
btn_get_result = gr.Button("Show classification")
|
| 90 |
with gr.Row():
|
| 91 |
+
with gr.Column(scale=4):
|
| 92 |
+
label_result = gr.Label(num_top_classes=None)
|
| 93 |
+
with gr.Column(scale=6):
|
| 94 |
+
reasoning = gr.Textbox(label="Reasoning", lines=5)
|
| 95 |
with gr.Tab("Sector definitions"):
|
| 96 |
with gr.Row():
|
| 97 |
with gr.Column(scale=4):
|
|
|
|
| 107 |
with gr.Tab("Logs"):
|
| 108 |
pass
|
| 109 |
|
| 110 |
+
btn_get_result.click(fn=click_button, inputs=[dropdown_model, abstract_description], outputs=[label_result, reasoning])
|
| 111 |
df_subsectors.select(fn=on_select, outputs=[subsector_name, s1_definition, s1_keywords, does_include, does_not_include])
|
| 112 |
|
| 113 |
if __name__ == "__main__":
|
chatgpt.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import openai
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class MessageChatCompletion:
|
| 5 |
+
def __init__(self,
|
| 6 |
+
model: str = 'gpt-3.5-turbo',
|
| 7 |
+
message: str = '',
|
| 8 |
+
api_key: str = '',
|
| 9 |
+
temperature: float = 0.07,
|
| 10 |
+
top_p: float = 1.0,
|
| 11 |
+
n: int = 1,
|
| 12 |
+
stream: bool = False,
|
| 13 |
+
stop: str = "\n",
|
| 14 |
+
max_tokens: int = 256,
|
| 15 |
+
presence_penalty: float = 0.0,
|
| 16 |
+
frequency_penalty: float = 0.0,
|
| 17 |
+
logit_bias: int = None,
|
| 18 |
+
user: str = ''):
|
| 19 |
+
|
| 20 |
+
openai.api_key = ''
|
| 21 |
+
openai.organization = ""
|
| 22 |
+
|
| 23 |
+
if model in ["gpt-4", "gpt-4-turbo-preview", "gpt-3.5-turbo"]:
|
| 24 |
+
self.endpoint = "https://api.openai.com/v1/chat/completions"
|
| 25 |
+
else:
|
| 26 |
+
self.endpoint = "https://api.openai.com/v1/completions"
|
| 27 |
+
|
| 28 |
+
self.headers = {
|
| 29 |
+
"Content-Type": "application/json",
|
| 30 |
+
"Authorization": f"Bearer {api_key}",
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
self.prompt = {
|
| 34 |
+
"model": model,
|
| 35 |
+
"messages": [],
|
| 36 |
+
"temperature": temperature,
|
| 37 |
+
"top_p": top_p,
|
| 38 |
+
"n": n,
|
| 39 |
+
"stream": stream,
|
| 40 |
+
"stop": stop,
|
| 41 |
+
"presence_penalty": presence_penalty,
|
| 42 |
+
"frequency_penalty": frequency_penalty
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
if max_tokens is not None:
|
| 46 |
+
self.prompt["max_tokens"] = max_tokens
|
| 47 |
+
|
| 48 |
+
if logit_bias is not None:
|
| 49 |
+
self.prompt["logit_bias"] = logit_bias
|
| 50 |
+
|
| 51 |
+
if user != '':
|
| 52 |
+
self.prompt["user"] = user
|
| 53 |
+
|
| 54 |
+
if message != '':
|
| 55 |
+
self.new_user_message(content=message)
|
| 56 |
+
|
| 57 |
+
self.response = ''
|
| 58 |
+
|
| 59 |
+
def new_message(self, role: str = 'user', content: str = '', name: str = ''):
|
| 60 |
+
new_message = {"role": role, "content": f"{content}"}
|
| 61 |
+
if name != '':
|
| 62 |
+
new_message['name'] = name
|
| 63 |
+
|
| 64 |
+
self.prompt['messages'].append(new_message)
|
| 65 |
+
|
| 66 |
+
def new_user_message(self, content: str = '', name: str = ''):
|
| 67 |
+
self.new_message(role='user', content=content, name=name)
|
| 68 |
+
|
| 69 |
+
def new_system_message(self, content: str = '', name: str = ''):
|
| 70 |
+
self.new_message(role='system', content=content, name=name)
|
| 71 |
+
|
| 72 |
+
def new_assistant_message(self, content: str = '', name: str = ''):
|
| 73 |
+
self.new_message(role='assistant', content=content, name=name)
|
| 74 |
+
|
| 75 |
+
def get_last_message(self):
|
| 76 |
+
return self.prompt['messages'][-1]['content']
|
| 77 |
+
|
| 78 |
+
def send_message(self):
|
| 79 |
+
|
| 80 |
+
response = openai.chat.completions.create(
|
| 81 |
+
model=self.prompt['model'],
|
| 82 |
+
messages=self.prompt['messages'],
|
| 83 |
+
frequency_penalty=self.prompt['frequency_penalty'],
|
| 84 |
+
temperature=self.prompt['temperature'],
|
| 85 |
+
max_tokens=self.prompt['max_tokens'],
|
| 86 |
+
top_p=self.prompt['top_p'],
|
| 87 |
+
presence_penalty=self.prompt['presence_penalty'],
|
| 88 |
+
stream=True
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
full_response = ""
|
| 92 |
+
for chunk in response:
|
| 93 |
+
chunk_message = chunk.choices[0].delta.content
|
| 94 |
+
if chunk_message is not None:
|
| 95 |
+
full_response += chunk_message
|
| 96 |
+
|
| 97 |
+
self.new_system_message(content=full_response)
|
| 98 |
+
|
| 99 |
+
return self.response
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
gradio
|
| 2 |
plotly
|
| 3 |
-
sentence-transformers
|
|
|
|
|
|
| 1 |
gradio
|
| 2 |
plotly
|
| 3 |
+
sentence-transformers
|
| 4 |
+
openai
|