Spaces:
No application file
No application file
| import math | |
| import random | |
| import torch | |
| from basicsr.archs.arch_util import default_init_weights | |
| from basicsr.utils.registry import ARCH_REGISTRY | |
| from torch import nn | |
| from torch.nn import functional as F | |
| class NormStyleCode(nn.Module): | |
| def forward(self, x): | |
| """Normalize the style codes. | |
| Args: | |
| x (Tensor): Style codes with shape (b, c). | |
| Returns: | |
| Tensor: Normalized tensor. | |
| """ | |
| return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8) | |
| class ModulatedConv2d(nn.Module): | |
| """Modulated Conv2d used in StyleGAN2. | |
| There is no bias in ModulatedConv2d. | |
| Args: | |
| in_channels (int): Channel number of the input. | |
| out_channels (int): Channel number of the output. | |
| kernel_size (int): Size of the convolving kernel. | |
| num_style_feat (int): Channel number of style features. | |
| demodulate (bool): Whether to demodulate in the conv layer. Default: True. | |
| sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. | |
| eps (float): A value added to the denominator for numerical stability. Default: 1e-8. | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| kernel_size, | |
| num_style_feat, | |
| demodulate=True, | |
| sample_mode=None, | |
| eps=1e-8): | |
| super(ModulatedConv2d, self).__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.kernel_size = kernel_size | |
| self.demodulate = demodulate | |
| self.sample_mode = sample_mode | |
| self.eps = eps | |
| # modulation inside each modulated conv | |
| self.modulation = nn.Linear(num_style_feat, in_channels, bias=True) | |
| # initialization | |
| default_init_weights(self.modulation, scale=1, bias_fill=1, a=0, mode='fan_in', nonlinearity='linear') | |
| self.weight = nn.Parameter( | |
| torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) / | |
| math.sqrt(in_channels * kernel_size**2)) | |
| self.padding = kernel_size // 2 | |
| def forward(self, x, style): | |
| """Forward function. | |
| Args: | |
| x (Tensor): Tensor with shape (b, c, h, w). | |
| style (Tensor): Tensor with shape (b, num_style_feat). | |
| Returns: | |
| Tensor: Modulated tensor after convolution. | |
| """ | |
| b, c, h, w = x.shape # c = c_in | |
| # weight modulation | |
| style = self.modulation(style).view(b, 1, c, 1, 1) | |
| # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1) | |
| weight = self.weight * style # (b, c_out, c_in, k, k) | |
| if self.demodulate: | |
| demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps) | |
| weight = weight * demod.view(b, self.out_channels, 1, 1, 1) | |
| weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size) | |
| # upsample or downsample if necessary | |
| if self.sample_mode == 'upsample': | |
| x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False) | |
| elif self.sample_mode == 'downsample': | |
| x = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False) | |
| b, c, h, w = x.shape | |
| x = x.view(1, b * c, h, w) | |
| # weight: (b*c_out, c_in, k, k), groups=b | |
| out = F.conv2d(x, weight, padding=self.padding, groups=b) | |
| out = out.view(b, self.out_channels, *out.shape[2:4]) | |
| return out | |
| def __repr__(self): | |
| return (f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, ' | |
| f'kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})') | |
| class StyleConv(nn.Module): | |
| """Style conv used in StyleGAN2. | |
| Args: | |
| in_channels (int): Channel number of the input. | |
| out_channels (int): Channel number of the output. | |
| kernel_size (int): Size of the convolving kernel. | |
| num_style_feat (int): Channel number of style features. | |
| demodulate (bool): Whether demodulate in the conv layer. Default: True. | |
| sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. | |
| """ | |
| def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None): | |
| super(StyleConv, self).__init__() | |
| self.modulated_conv = ModulatedConv2d( | |
| in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode) | |
| self.weight = nn.Parameter(torch.zeros(1)) # for noise injection | |
| self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1)) | |
| self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) | |
| def forward(self, x, style, noise=None): | |
| # modulate | |
| out = self.modulated_conv(x, style) * 2**0.5 # for conversion | |
| # noise injection | |
| if noise is None: | |
| b, _, h, w = out.shape | |
| noise = out.new_empty(b, 1, h, w).normal_() | |
| out = out + self.weight * noise | |
| # add bias | |
| out = out + self.bias | |
| # activation | |
| out = self.activate(out) | |
| return out | |
| class ToRGB(nn.Module): | |
| """To RGB (image space) from features. | |
| Args: | |
| in_channels (int): Channel number of input. | |
| num_style_feat (int): Channel number of style features. | |
| upsample (bool): Whether to upsample. Default: True. | |
| """ | |
| def __init__(self, in_channels, num_style_feat, upsample=True): | |
| super(ToRGB, self).__init__() | |
| self.upsample = upsample | |
| self.modulated_conv = ModulatedConv2d( | |
| in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None) | |
| self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) | |
| def forward(self, x, style, skip=None): | |
| """Forward function. | |
| Args: | |
| x (Tensor): Feature tensor with shape (b, c, h, w). | |
| style (Tensor): Tensor with shape (b, num_style_feat). | |
| skip (Tensor): Base/skip tensor. Default: None. | |
| Returns: | |
| Tensor: RGB images. | |
| """ | |
| out = self.modulated_conv(x, style) | |
| out = out + self.bias | |
| if skip is not None: | |
| if self.upsample: | |
| skip = F.interpolate(skip, scale_factor=2, mode='bilinear', align_corners=False) | |
| out = out + skip | |
| return out | |
| class ConstantInput(nn.Module): | |
| """Constant input. | |
| Args: | |
| num_channel (int): Channel number of constant input. | |
| size (int): Spatial size of constant input. | |
| """ | |
| def __init__(self, num_channel, size): | |
| super(ConstantInput, self).__init__() | |
| self.weight = nn.Parameter(torch.randn(1, num_channel, size, size)) | |
| def forward(self, batch): | |
| out = self.weight.repeat(batch, 1, 1, 1) | |
| return out | |
| class StyleGAN2GeneratorClean(nn.Module): | |
| """Clean version of StyleGAN2 Generator. | |
| Args: | |
| out_size (int): The spatial size of outputs. | |
| num_style_feat (int): Channel number of style features. Default: 512. | |
| num_mlp (int): Layer number of MLP style layers. Default: 8. | |
| channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. | |
| narrow (float): Narrow ratio for channels. Default: 1.0. | |
| """ | |
| def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1): | |
| super(StyleGAN2GeneratorClean, self).__init__() | |
| # Style MLP layers | |
| self.num_style_feat = num_style_feat | |
| style_mlp_layers = [NormStyleCode()] | |
| for i in range(num_mlp): | |
| style_mlp_layers.extend( | |
| [nn.Linear(num_style_feat, num_style_feat, bias=True), | |
| nn.LeakyReLU(negative_slope=0.2, inplace=True)]) | |
| self.style_mlp = nn.Sequential(*style_mlp_layers) | |
| # initialization | |
| default_init_weights(self.style_mlp, scale=1, bias_fill=0, a=0.2, mode='fan_in', nonlinearity='leaky_relu') | |
| # channel list | |
| channels = { | |
| '4': int(512 * narrow), | |
| '8': int(512 * narrow), | |
| '16': int(512 * narrow), | |
| '32': int(512 * narrow), | |
| '64': int(256 * channel_multiplier * narrow), | |
| '128': int(128 * channel_multiplier * narrow), | |
| '256': int(64 * channel_multiplier * narrow), | |
| '512': int(32 * channel_multiplier * narrow), | |
| '1024': int(16 * channel_multiplier * narrow) | |
| } | |
| self.channels = channels | |
| self.constant_input = ConstantInput(channels['4'], size=4) | |
| self.style_conv1 = StyleConv( | |
| channels['4'], | |
| channels['4'], | |
| kernel_size=3, | |
| num_style_feat=num_style_feat, | |
| demodulate=True, | |
| sample_mode=None) | |
| self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False) | |
| self.log_size = int(math.log(out_size, 2)) | |
| self.num_layers = (self.log_size - 2) * 2 + 1 | |
| self.num_latent = self.log_size * 2 - 2 | |
| self.style_convs = nn.ModuleList() | |
| self.to_rgbs = nn.ModuleList() | |
| self.noises = nn.Module() | |
| in_channels = channels['4'] | |
| # noise | |
| for layer_idx in range(self.num_layers): | |
| resolution = 2**((layer_idx + 5) // 2) | |
| shape = [1, 1, resolution, resolution] | |
| self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape)) | |
| # style convs and to_rgbs | |
| for i in range(3, self.log_size + 1): | |
| out_channels = channels[f'{2**i}'] | |
| self.style_convs.append( | |
| StyleConv( | |
| in_channels, | |
| out_channels, | |
| kernel_size=3, | |
| num_style_feat=num_style_feat, | |
| demodulate=True, | |
| sample_mode='upsample')) | |
| self.style_convs.append( | |
| StyleConv( | |
| out_channels, | |
| out_channels, | |
| kernel_size=3, | |
| num_style_feat=num_style_feat, | |
| demodulate=True, | |
| sample_mode=None)) | |
| self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True)) | |
| in_channels = out_channels | |
| def make_noise(self): | |
| """Make noise for noise injection.""" | |
| device = self.constant_input.weight.device | |
| noises = [torch.randn(1, 1, 4, 4, device=device)] | |
| for i in range(3, self.log_size + 1): | |
| for _ in range(2): | |
| noises.append(torch.randn(1, 1, 2**i, 2**i, device=device)) | |
| return noises | |
| def get_latent(self, x): | |
| return self.style_mlp(x) | |
| def mean_latent(self, num_latent): | |
| latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device) | |
| latent = self.style_mlp(latent_in).mean(0, keepdim=True) | |
| return latent | |
| def forward(self, | |
| styles, | |
| input_is_latent=False, | |
| noise=None, | |
| randomize_noise=True, | |
| truncation=1, | |
| truncation_latent=None, | |
| inject_index=None, | |
| return_latents=False): | |
| """Forward function for StyleGAN2GeneratorClean. | |
| Args: | |
| styles (list[Tensor]): Sample codes of styles. | |
| input_is_latent (bool): Whether input is latent style. Default: False. | |
| noise (Tensor | None): Input noise or None. Default: None. | |
| randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. | |
| truncation (float): The truncation ratio. Default: 1. | |
| truncation_latent (Tensor | None): The truncation latent tensor. Default: None. | |
| inject_index (int | None): The injection index for mixing noise. Default: None. | |
| return_latents (bool): Whether to return style latents. Default: False. | |
| """ | |
| # style codes -> latents with Style MLP layer | |
| if not input_is_latent: | |
| styles = [self.style_mlp(s) for s in styles] | |
| # noises | |
| if noise is None: | |
| if randomize_noise: | |
| noise = [None] * self.num_layers # for each style conv layer | |
| else: # use the stored noise | |
| noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)] | |
| # style truncation | |
| if truncation < 1: | |
| style_truncation = [] | |
| for style in styles: | |
| style_truncation.append(truncation_latent + truncation * (style - truncation_latent)) | |
| styles = style_truncation | |
| # get style latents with injection | |
| if len(styles) == 1: | |
| inject_index = self.num_latent | |
| if styles[0].ndim < 3: | |
| # repeat latent code for all the layers | |
| latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
| else: # used for encoder with different latent code for each layer | |
| latent = styles[0] | |
| elif len(styles) == 2: # mixing noises | |
| if inject_index is None: | |
| inject_index = random.randint(1, self.num_latent - 1) | |
| latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
| latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) | |
| latent = torch.cat([latent1, latent2], 1) | |
| # main generation | |
| out = self.constant_input(latent.shape[0]) | |
| out = self.style_conv1(out, latent[:, 0], noise=noise[0]) | |
| skip = self.to_rgb1(out, latent[:, 1]) | |
| i = 1 | |
| for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2], | |
| noise[2::2], self.to_rgbs): | |
| out = conv1(out, latent[:, i], noise=noise1) | |
| out = conv2(out, latent[:, i + 1], noise=noise2) | |
| skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space | |
| i += 2 | |
| image = skip | |
| if return_latents: | |
| return image, latent | |
| else: | |
| return image, None | |