Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,32 +5,31 @@ from peft import PeftConfig, PeftModel
|
|
5 |
import pandas as pd
|
6 |
from datasets import Dataset, load_dataset
|
7 |
from sklearn.model_selection import train_test_split
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
-
|
14 |
-
model = AutoModelForCausalLM.from_pretrained(
|
15 |
-
MODEL_NAME,
|
16 |
-
device_map="auto",
|
17 |
-
trust_remote_code=True
|
18 |
-
).to(device)
|
19 |
-
except Exception as e:
|
20 |
-
print(f"Error loading base model: {e}")
|
21 |
|
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
23 |
tokenizer.pad_token = tokenizer.eos_token
|
24 |
-
model.gradient_checkpointing_enable()
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Load the dataset
|
36 |
dataset = load_dataset("trungtienluong/500cau")
|
@@ -61,7 +60,8 @@ def post_process_answer(answer):
|
|
61 |
def generate_answer(question):
|
62 |
try:
|
63 |
prompt = create_prompt(question)
|
64 |
-
encoding = tokenizer(prompt, return_tensors="pt")
|
|
|
65 |
with torch.inference_mode():
|
66 |
outputs = model.generate(
|
67 |
input_ids=encoding.input_ids,
|
|
|
5 |
import pandas as pd
|
6 |
from datasets import Dataset, load_dataset
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
+
from accelerate import Accelerator
|
9 |
|
10 |
+
# Initialize the accelerator
|
11 |
+
accelerator = Accelerator()
|
|
|
12 |
|
13 |
+
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Load the tokenizer
|
16 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
17 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
18 |
|
19 |
+
# Load the base model with accelerate
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
MODEL_NAME,
|
22 |
+
trust_remote_code=True
|
23 |
+
)
|
24 |
+
model = accelerator.prepare(model)
|
25 |
+
|
26 |
+
# Load the pre-trained model with PEFT
|
27 |
+
peft_config = PeftConfig.from_pretrained("trungtienluong/experiments500czephymodelngay11t6l1")
|
28 |
+
model = PeftModel.from_pretrained(model, "trungtienluong/experiments500czephymodelngay11t6l1")
|
29 |
+
model = accelerator.prepare(model)
|
30 |
+
|
31 |
+
# Enable gradient checkpointing
|
32 |
+
model.gradient_checkpointing_enable()
|
33 |
|
34 |
# Load the dataset
|
35 |
dataset = load_dataset("trungtienluong/500cau")
|
|
|
60 |
def generate_answer(question):
|
61 |
try:
|
62 |
prompt = create_prompt(question)
|
63 |
+
encoding = tokenizer(prompt, return_tensors="pt")
|
64 |
+
encoding = accelerator.prepare(encoding)
|
65 |
with torch.inference_mode():
|
66 |
outputs = model.generate(
|
67 |
input_ids=encoding.input_ids,
|