Spaces:
Sleeping
Sleeping
Commit
·
c2261c9
1
Parent(s):
0c4451d
Update app.py
Browse files
app.py
CHANGED
@@ -12,43 +12,57 @@ def calculate_total_calories(user_input):
|
|
12 |
results = []
|
13 |
|
14 |
for item in menu_items:
|
15 |
-
# Split the menu item into quantity and item name
|
16 |
parts = item.strip().split(' ', 1)
|
17 |
-
|
18 |
if len(parts) == 2:
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
else:
|
22 |
-
quantity = 1 # Assume a default quantity of 1 if not specified
|
23 |
item_name = item.strip()
|
24 |
-
|
25 |
# Calculate the similarity scores between the item name and menu item names
|
26 |
similarity_scores = df_menu['food'].apply(lambda x: fuzz.token_set_ratio(x.lower(), item_name.lower()))
|
27 |
-
|
28 |
# Find the closest match with the highest similarity score
|
29 |
closest_match_index = similarity_scores.idxmax()
|
30 |
closest_match_score = similarity_scores[closest_match_index]
|
31 |
-
|
32 |
# Check if the similarity score is above a certain threshold
|
33 |
threshold = 60
|
34 |
if closest_match_score < threshold:
|
35 |
results.append("Không tìm thấy thông tin thức ăn: " + item_name)
|
36 |
continue
|
37 |
-
|
38 |
# Get the closest match menu item details
|
39 |
closest_match = df_menu.loc[closest_match_index]
|
40 |
menu_name = closest_match['food']
|
41 |
-
|
42 |
calories = closest_match['calo']
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# Calculate the total calories for the current menu item
|
45 |
-
item_calories = calories * quantity
|
46 |
total_calories += item_calories
|
47 |
results.append("Tên món ăn: " + menu_name)
|
48 |
-
results.append("
|
49 |
-
results.append("
|
50 |
-
results.append("Lượng calories trong mỗi đơn vị: " + str(calories)+ " Kcals")
|
51 |
-
results.append("Tổng lượng calories của " + menu_name + ": " + str(item_calories)+ " Kcals")
|
52 |
results.append("") # Add an empty entry for spacing
|
53 |
|
54 |
results.append(str(total_calories) + " Kcals")
|
|
|
12 |
results = []
|
13 |
|
14 |
for item in menu_items:
|
15 |
+
# Split the menu item into quantity and item name or unit and item name
|
16 |
parts = item.strip().split(' ', 1)
|
17 |
+
|
18 |
if len(parts) == 2:
|
19 |
+
first_part = parts[0]
|
20 |
+
second_part = parts[1]
|
21 |
+
|
22 |
+
# Check if the first part is a valid quantity (e.g., "200g")
|
23 |
+
try:
|
24 |
+
quantity = float(first_part)
|
25 |
+
item_name = second_part
|
26 |
+
except ValueError:
|
27 |
+
quantity = 1.0 # Assume a default quantity of 1 if not specified
|
28 |
+
unit = first_part
|
29 |
+
item_name = second_part
|
30 |
else:
|
31 |
+
quantity = 1.0 # Assume a default quantity of 1 if not specified
|
32 |
item_name = item.strip()
|
33 |
+
|
34 |
# Calculate the similarity scores between the item name and menu item names
|
35 |
similarity_scores = df_menu['food'].apply(lambda x: fuzz.token_set_ratio(x.lower(), item_name.lower()))
|
36 |
+
|
37 |
# Find the closest match with the highest similarity score
|
38 |
closest_match_index = similarity_scores.idxmax()
|
39 |
closest_match_score = similarity_scores[closest_match_index]
|
40 |
+
|
41 |
# Check if the similarity score is above a certain threshold
|
42 |
threshold = 60
|
43 |
if closest_match_score < threshold:
|
44 |
results.append("Không tìm thấy thông tin thức ăn: " + item_name)
|
45 |
continue
|
46 |
+
|
47 |
# Get the closest match menu item details
|
48 |
closest_match = df_menu.loc[closest_match_index]
|
49 |
menu_name = closest_match['food']
|
50 |
+
item_unit = closest_match['unit']
|
51 |
calories = closest_match['calo']
|
52 |
+
|
53 |
+
if quantity != 1.0:
|
54 |
+
# Check if the quantity is in grams or milliliters
|
55 |
+
if item_unit.lower() == 'g' or item_unit.lower() == 'gram':
|
56 |
+
quantity = float(quantity)
|
57 |
+
elif item_unit.lower() == 'l' or item_unit.lower() == 'lit':
|
58 |
+
quantity = float(quantity) * 1000
|
59 |
+
|
60 |
# Calculate the total calories for the current menu item
|
61 |
+
item_calories = (calories / item_unit) * quantity
|
62 |
total_calories += item_calories
|
63 |
results.append("Tên món ăn: " + menu_name)
|
64 |
+
results.append("Lượng: " + str(quantity) + " " + item_unit)
|
65 |
+
results.append("Lượng calories: " + str(item_calories) + " Kcals")
|
|
|
|
|
66 |
results.append("") # Add an empty entry for spacing
|
67 |
|
68 |
results.append(str(total_calories) + " Kcals")
|