|
""" |
|
Born out of Depth Anything V2 |
|
Make sure you have the necessary libraries installed. |
|
Code by @1ssb |
|
|
|
This script processes a video to generate depth maps and corresponding point clouds for each frame. |
|
The resulting depth maps are saved in a video format, and the point clouds can be interactively generated for selected frames. |
|
|
|
Usage: |
|
python script.py --video-path path_to_video --input-size 518 --outdir output_directory --encoder vitl --focal-length-x 470.4 --focal-length-y 470.4 --pred-only --grayscale |
|
|
|
Arguments: |
|
--video-path: Path to the input video. |
|
--input-size: Size to which the input frame is resized for depth prediction. |
|
--outdir: Directory to save the output video and point clouds. |
|
--encoder: Model encoder to use. Choices are ['vits', 'vitb', 'vitl', 'vitg']. |
|
--focal-length-x: Focal length along the x-axis. |
|
--focal-length-y: Focal length along the y-axis. |
|
--pred-only: Only display the prediction without the original frame. |
|
--grayscale: Do not apply colorful palette to the depth map. |
|
""" |
|
|
|
import argparse |
|
import cv2 |
|
import glob |
|
import matplotlib |
|
import numpy as np |
|
import os |
|
import torch |
|
import open3d as o3d |
|
|
|
from depth_anything_v2.dpt import DepthAnythingV2 |
|
|
|
|
|
def main(): |
|
|
|
parser = argparse.ArgumentParser(description='Depth Anything V2 with Point Cloud Generation') |
|
parser.add_argument('--video-path', type=str, required=True, help='Path to the input video.') |
|
parser.add_argument('--input-size', type=int, default=518, help='Size to which the input frame is resized for depth prediction.') |
|
parser.add_argument('--outdir', type=str, default='./vis_video_depth', help='Directory to save the output video and point clouds.') |
|
parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg'], help='Model encoder to use.') |
|
parser.add_argument('--focal-length-x', default=470.4, type=float, help='Focal length along the x-axis.') |
|
parser.add_argument('--focal-length-y', default=470.4, type=float, help='Focal length along the y-axis.') |
|
parser.add_argument('--pred-only', dest='pred_only', action='store_true', help='Only display the prediction.') |
|
parser.add_argument('--grayscale', dest='grayscale', action='store_true', help='Do not apply colorful palette.') |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' |
|
|
|
|
|
model_configs = { |
|
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, |
|
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, |
|
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, |
|
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} |
|
} |
|
|
|
|
|
depth_anything = DepthAnythingV2(**model_configs[args.encoder]) |
|
depth_anything.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_{args.encoder}.pth', map_location='cpu')) |
|
depth_anything = depth_anything.to(DEVICE).eval() |
|
|
|
|
|
if os.path.isfile(args.video_path): |
|
if args.video_path.endswith('txt'): |
|
with open(args.video_path, 'r') as f: |
|
lines = f.read().splitlines() |
|
else: |
|
filenames = [args.video_path] |
|
else: |
|
filenames = glob.glob(os.path.join(args.video_path, '**/*'), recursive=True) |
|
|
|
|
|
os.makedirs(args.outdir, exist_ok=True) |
|
|
|
margin_width = 50 |
|
cmap = matplotlib.colormaps.get_cmap('Spectral_r') |
|
|
|
for k, filename in enumerate(filenames): |
|
print(f'Processing {k+1}/{len(filenames)}: {filename}') |
|
|
|
raw_video = cv2.VideoCapture(filename) |
|
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS)) |
|
|
|
if args.pred_only: |
|
output_width = frame_width |
|
else: |
|
output_width = frame_width * 2 + margin_width |
|
|
|
output_path = os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + '.mp4') |
|
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (output_width, frame_height)) |
|
|
|
frame_index = 0 |
|
frame_data = [] |
|
|
|
while raw_video.isOpened(): |
|
ret, raw_frame = raw_video.read() |
|
if not ret: |
|
break |
|
|
|
depth = depth_anything.infer_image(raw_frame, args.input_size) |
|
|
|
depth_normalized = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 |
|
depth_normalized = depth_normalized.astype(np.uint8) |
|
|
|
if args.grayscale: |
|
depth_colored = np.repeat(depth_normalized[..., np.newaxis], 3, axis=-1) |
|
else: |
|
depth_colored = (cmap(depth_normalized)[:, :, :3] * 255)[:, :, ::-1].astype(np.uint8) |
|
|
|
if args.pred_only: |
|
out.write(depth_colored) |
|
else: |
|
split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255 |
|
combined_frame = cv2.hconcat([raw_frame, split_region, depth_colored]) |
|
out.write(combined_frame) |
|
|
|
frame_data.append((raw_frame, depth, depth_colored)) |
|
frame_index += 1 |
|
|
|
raw_video.release() |
|
out.release() |
|
|
|
|
|
def create_point_cloud(raw_frame, depth_map, frame_index): |
|
height, width = raw_frame.shape[:2] |
|
focal_length_x = args.focal_length_x |
|
focal_length_y = args.focal_length_y |
|
|
|
x, y = np.meshgrid(np.arange(width), np.arange(height)) |
|
x = (x - width / 2) / focal_length_x |
|
y = (y - height / 2) / focal_length_y |
|
z = np.array(depth_map) |
|
|
|
points = np.stack((np.multiply(x, z), np.multiply(y, z), z), axis=-1).reshape(-1, 3) |
|
colors = raw_frame.reshape(-1, 3) / 255.0 |
|
|
|
pcd = o3d.geometry.PointCloud() |
|
pcd.points = o3d.utility.Vector3dVector(points) |
|
pcd.colors = o3d.utility.Vector3dVector(colors) |
|
|
|
pcd_path = os.path.join(args.outdir, f'frame_{frame_index}_point_cloud.ply') |
|
o3d.io.write_point_cloud(pcd_path, pcd) |
|
print(f'Point cloud saved to {pcd_path}') |
|
|
|
|
|
def on_trackbar(val): |
|
frame_index = val |
|
raw_frame, depth_map, _ = frame_data[frame_index] |
|
create_point_cloud(raw_frame, depth_map, frame_index) |
|
|
|
if frame_data: |
|
cv2.namedWindow('Select Frame for Point Cloud') |
|
cv2.createTrackbar('Frame', 'Select Frame for Point Cloud', 0, frame_index - 1, on_trackbar) |
|
|
|
while True: |
|
key = cv2.waitKey(1) & 0xFF |
|
if key == 27: |
|
break |
|
|
|
cv2.destroyAllWindows() |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|